Previous YEARS' QUESTIONS

Q.1 Construct NFA to accept a (a/b)*b. [R.T.U. 2016}

NFA = a(a/b)* b
Starting state
Final state

Total No. of state

ab

Fig.

Ans.

’

. What do you mean by preprocessor?

Ans. Preprocessor : A source program may be divided
into modules stored in separate files the task of collecting
the source program is some times =nurusted to a distinct
program, called “Preprocessor”. The preprocessor may
-also expand short hands called macros, into source
language statements.
— e

Q3 ; Jefine static checkers, \/, S

Ans. Static Checkers : A static checker reads a program,
analyzes it and attempts to discover potential bugs without
running the program. .

- /

- — -
Q4 _What is the rolg-of ¢ode optimizarlon?
- B— g
ns. Code Optimization : The code optimization phase

attempts to improve the intermediate code, so that faster
running-machine code will result.

: = SR '# ﬁ -
M the function @f syntax analysis. D_~"
; — e

Ans. The “syntax analysis” imposes a hierarchical
structure on the token stream, more specifically in tree
structure.

Ilivstrate the translation of the Jollowing
Statement on all phase of compiler
A:=B*C+DE IRT.U. 2018, 2012}

Compiler Design

N

Ams. Translation can take place as described below

Symbol Table

A=B*C+D/E

lexical analyzer I

2

id, == id, * id, + id/id,
+

Syntax analyzer j

.....

e/ lw/ (9] [ve] b8

v

id/. b
: *
' id,/ \+

id,/

N, ’
i N
id, id,

¥

Semantic analyzer j

v

i'c[/. | »

1 *

idz/ \+
v

= : -
id, id,

Llntermediate code generator 7

templ = id/id,

temp2 := id, + temp1

temp3 ;= id, * temp2
id, := temp3

+

Code Optimizer —]

<

templ = id,/id,
temp2 := id, + temp]
id, :=id, * temp2

4

Code Generator

S

¥

MOVF id,, R2
MOVF id,, R1
DIVF R2, R1

MOVF id,, RO
ADDF RO, R1
MOVF id,, R3
MULF R1, R3
MOVF R3, id,

1 ﬁ‘cn.sl

@Ex Igin the Sfollowing terms :
2 \/(‘;)J Translators, Compilers and Interpreters
- e

[RTU.2018, 2012

OR
/ Differentiate between compiler and
[RTU. 2013, 2010, 2008

interpreter.
Ly{ﬁ) Bootstrappi
- %:a 2018, 2012, 2010, 2008)

Ans.(i) Difference Between Translator, Compiler
and Interpreter

Translator: A translator is a program that takes
input as a program written in one programming language
and converts it in output program of other programming
language. 5

Compiler : Compilers are the translators which
translate a program written in high level language like C++,
FORTRAN, COBOL, PASCAL into machine code for
some computer architecture. The generated code can be
later executed many times against different data each time.

Load e Resalt
Source F Objeet
'% Compiler -%) =) Or
Program Program m 2 (Object Program outpat)

so in this sense compiler, compile the whole program
at a time.

Interpreter : An interpreter reads an source
program written in high level programming language as
well as data for this program and it runs the program
against the data to produce some results,

So we can say that interpreter compiles the source
‘program line to line and an interpreter is generally slower
than a compiler because it processes and interprets each
statement in a program as many times as the number of
the evaluation of this statement.

Table : Difference between Compiler and Interpreter

S. Compiler -Interpreter
No.
1. |Translates the whole program | Translates one-by-one each
at once. statement of the program.
2. {Its output is in form of Its output is an intermediate
machine code. code.
3. |Its execution time is fast. Execution time is slow.
4. |Needs more amount of Needs lesser memory.

memory.

(ii) Bootstrapping : A full assembler is itself a major
piece of software, rather simple when compared with a

(@D

compiler for a really high level language, as we shall see.
It is, however, quite common to define one language as a
subset of another, so that subset 1 is contained in subset 2
which in tum is contained in subset 3 and so on, that is :
Subset 1 < Subset 2 — Subset 3 of ASSEMBLER
One might first write an assembler for subset | of
" ASSEMBLER in machine code, perhaps on a load-and-
go basis (more likely one writes in ASSEMBLER and then
hand translates it into machine code). This subset assembler
program might, perhaps, do very little other than convert
mnemonic opcodes into binary form. One might then write
an assembler for subset 2 of ASSEMBLER in subset | of
ASSEMBLER and so on. This process, by which a simple
language is used to translate a more complicated program,
which in turn may handle an even more complicated
program and so on, is known as “bootstrapping”, by
analogy with the idea that it might be possible to lift oneself
off the ground by tugging at one’s bootstraps.

In computing, bootstrapping (from an old expression
“to pull oneseif up by one’s bootstraps™) is a technique by
" which a simple computer program activates a more
complicated system of programs. In the start up process
a_computer system, a small program (such as BIOS)
initializes and tests that a basic requirement of hardware,
pQ, ipherals and external memory devices are connected.
Vw loads 2 program from one of them and passes control
thus allowing the loading of larger programs (such as
perating system). A different use of the term
ing is to use a compiler to compile itself, by first
writing 2 small part of a compiler of a new programming
language in an existing language to compile more programs
of the new compiler written in the new language. This
solves the “chicken and egg” causality dilemma.

‘ How can we represent tree as terms? Illustrate

your explanation with an example.
[R.T.U. 2018, 2014/

Aans. A tree is the representation of a source code written
in a particular programming language. Each node of a
tree denotes a construct occurring in the source code.
For instance, in the given example grouping parenthesis
are implicit in the tree structure, and a syntactic construct
like an if-else condition then expression may be denoted
by means of a single node with three branches.

The tree is often build by a parser during the source
code translation and compiling process. The following
diagram illustrates the tree representation of if-else
statement:

{(B.Tech. (V 8em.) C.S. Solved Papers)

statement L
sequence

constant

name : b value : 0 [
‘ condition if-body else-body
1
compare : :
op:> assign assign
variable variable variable bin op variable bin op
name:a| | name: b name: o op: — name.:b op: -
variable || variable varigble || variable
name ‘' a || name: b name:a|| name: b
Fig.

A tree is usually the result of the syntax analysis
phase of a compiler. It often serves as an intermediate
representation of the program through several stages that
the compiler requires, and has a strong lmpact on the
final output of the compiler.

The following things must be lncluded while
designing a tree for a source code :

(a) Variables types must be preserved as WGIl as the
location of each declaration in source code.

(b) The order of executable statements must be
explicitly represented and well defined.

(c) Leftand right components of binary operations must
be stored and correctly identified.

(d) Identifiers and their assigned values must be stored
for assignment statements.

Some operations will always require two elements,
such as the two terms for addition. However, some
language constructs require an arbitarily large number of
children, such as argument lists passed to programs from
the command shell. As a result tree has to be flexible
enough to allow for quick addition for an unknown quantity
of children.

Another major design requirement for a tree is that
it should be possible to unparse a tree into source code
form. The source code produced should be sufficiently

similar to the original in appearance and identical in
execution on recompilation.

——

Q9 (a) D Dtscuss data structures used by a cmpiler.
(b) Discuss various error recovery techniques
Jor a lexical analysis. IRTU. 2017]

—_—m———

M

”

+(CD8)—

-

digit

start . digit ' other (

Fig. 4

@:: ;Why do we need Syntax trees when constructing

/ compilers? IRTU, 20147
i __—.—_‘—____'_——-—n—._______
Ans. Syntax tree formation is one of the essential part to
be carried out while constructing compilers to know that
whether the grammer being inputted have a valid sequence
of tokens. . :
Tokens are valid sequence of symbols, keywords,
identifiers etc. The parser takes the token produced during
the lexical analysis stage, and attempts to build a certain
memory structure to represent that input. Frequently, that
structure is an ‘abstract syntax tree’ (AST).

The parse tree is used to construct the AST which
is precise representation of the program that is used by
later phases in the compiler, in particular the type checker
(for statically typed languages) and the code generator.

. The advantage of AST over the program
representations such as strings is that ASTs make access
to the immediate sub-programs of a program easy, eg.
" The program has
- If C then P else Q

Three immediate sub-programs namely C,P and

Q. The AST for the prograr has three points to the sub-

programs.
(in
© ¢ ©

Fig. 1
Which provides exact information needed for
efficient type checking and code-generation.
Let us consider an arithmetic expression 4 * (3+17
in the obvious grammer of arithmetic expression:
j E—SE+E|E*E|(E)|0]1]2] ...
Let us ignore the ambiguity and left recursion in
‘that grammer. Parse tree for 4 * (3+1T)is

~{(D.Tech. (V Bem.) C.8. Bolved Papers)

Flg. 2
The corresponding AST for above tree is -

Fig.3
Above example illustrates how syntax tree models
the specific order in which aperators are applied.

at are the fundamental differences between
parse trees and abstract syniax free

[RT.U. 2014]

Ans. Parse tree which is also known as concrete-syntax

trees are a representation of grammars in a tree-Jike form.

* Aparsetree pictorially shows how the start symbol
of grammar derives a string in the language.

" * CSTisaonetoone mapping from the grammar to

a tree form.
* Inparsetree, the ‘+’ expression can look in different
* waysas ;
(a)2+3 (b) (+23)
(©)(23+) (d) the sum of 2 and 3.

. Pf.rse tree illustrates how tokens are grouped
together, Basically the tree is initially constructed
by the parser. '

¢ The structure of the tree:

* Nodes: Non-terminals
® . Leaves : Terminals

7

(Comptr)

Parse tree are defined by content free grammars
Exp::=Exp"+" Exp;

Exp::="2".

Exp::="3",

Parse tree for the above expression will be drawn

@
&)) &
(@) ()

Fig.]

Abstract Syntax Tree (AST)

AST are simplified syntactic representation of the
source code, and they are most often expressed by
the data structures of the language used for
implementation.

AST discard al] the information that may be
important for parsing the string, but isn’t needed
for analyzing it.

AST are usually the last product of the front-end
of'a compiler.
The expression in AST only shows the significant

parts. For eg. A sum expression has its two operand
expression as its significant part.

&
) B

Fig, 2
Abstract tree shows the semantically significant
Structure i.c. it gives the tree returned by the parser
and manipulated by type checker. :
The structure of the tree:

* Nodes: Constructor functions

* Leaves: Atoms

Abstract trees are defined

by constructor type
signatures.

AN

-

T

-4

fig.3:

B

AST for the above expression will be drawn as

o)

Fig. 3

Q. hat is finit mala?
W,

th an example. Construct NFA, that recognizes
(a/b)* abb. Also show that whether the string aabb
is accepted by this NFA or not.

Input buffer

Ans. Finite Automata : The finite automata are used as
the mathematical model that can be used to recognize the
regular expressions. The regular expressions are built to
match the pattern of the lexeme to identify the tokens. In
order to recognize tokens the regular expression can be
created. These regular expressions then can be converted
into the equivalent NFA. The NFA then can be con\;erted
to DFA. Input string is read character by character and

lexical analysis is done using the finite automata so that
valid tokens can be generated.

Lexeme » :
— Finite automata

"NFA is DFA
built generated
. Patterns

lain NFA and DFA

Pattern matching
algorithm |

Tokens

Fig.
Nondeterministic Finite Automata
A nondeterministic finite automaton (NFA, fo!
is a mathematical model that consists of (N VOB
1. A setof states S. ’
2. Adetofinput symbols I (the input symbol alphab
m 0 et),
3. A transition function move that maps state?symbgl '
pairs to sets of states.

f

@
G
Grpmed
-
™
& —
@ r—
i —
——
r—
S
A .
AL
I
.
n o
nd
e 1 v
.
l
o
'i -
'i.:
A -

(cp.10}

4. A state s, that is distinguished as the start (or initial)
state.

5. A set of states F distinguished as accepting (or final)
states.

“An NFA can be represented diagrammatically by a
labeled directed graph, called a transition graph, in which
the nodes are the states and the labeled edges represent
the transition function. This graph looks like a transition
diagram, but the same character can label two or more
transitions out of one state and edges can be labeled by the
special symbol € as well as by input symbols.

Construction of NFA

The transition graph for an NFA that recognizes the
language (a) (b) *abb is shown in fig. 1. The set of states
ofthe NFA is {0; 1,2, 3} and the input symbol alphabet is
{a, b}. State 0 in Fig. 2 is distinguished as the start state
and the accepting state 3 is indicated by a double circle.

Fig. 1 : A nondeterministic finite automaton

In a computer, the transition function of an NFA can
be implemented in several different ways, as we shall see.
The easiest implementation is a transition table in which
there is a row for each state and a column for each input
symbol and €, if necessary. The entry for row i and symbol
a in the table is the set of states (or more likely in practice, |
a pointer to the set of states) that can be reached by a
transition from state € on input a. The transition table for
the NFA of fig. 1 is shown in fig. 2.

The transition table representation has the advantage
that it provides fast access to the transitions of a given
state on a given character; its disadvantage is that it can
take up a lot of space when the input alphabet is large and
most transitions are to the empty set.

Input Symbol

State A B C
0 . {0, 1) {0} -
1 - {2} o |
2 - {3} - j

Fig. 2 : Transition table for the finite automaton of fig. |

Adjacency list representations of the transition function
provide more compact implementations, but access to a
given transition is slower. It should be clear that we can
easily convert any one of these imp lementations of a finite
automaton into another.

'y

—{B.Tech. (V Sem.) C.S. Solved Papers)
_ AnNFA accepts an input string x if and only if there
is some path in the transition graph from the start state 10

al) some accepting state, such that the edge labels along this

path spell out x. The NFAof fig. 3 accepts the input strings
abb, aabb, babb, aaabb, For example, aabb 1s accepted
by the path from 0, follow ing the edge labeled a to state 0
again, then to states !, 2 and 3 via edges labeled a, b and
b, respectively.

A path can be represented by a sequence of state
transitions called moves. The follow ing diagram shows
the moves made in accepting the input string aabb :

02502512575 ,,

In general. more than one sequence of moves can
lead to an accepting state. Notice that several other
sequences of moves may be made on the input string aabb,
but none of the others happens to end in an accepting
state. For example, another sequence of moves on input
- 2abb keeps re-entering the non-accepting state 0 :

0—25>0—250—L50-Lb5
The language defined by an NFA is the set of input
strings it accepts. It is not hard to show that the NFA of

fig. 1 accepts (a/b)* abb. 2_)\/0);

r-—
_ Parr-C |
USRS =Y

.1 ain v
ith suitable example.

— —

\f Draw and discuss phases of a compiler.

¢ompiler phrases in brief
JRTU 2073;- r?-, (
[\

L

[RTU20171=
OR
What are the phases of a compiler? Explain the
function of each phase in brief. [R.T.U. 2016f
OR

Explain the difference phases of compiler design
with the help of suitable diagram? [RT.U. 2015].
OR
What are the different phases of compiler?
Explain them with the help of suitable example,
JR.T.U. Dec. 2013, 2012, 20!1]
OR
Explain all phases of compiler with suitable
example. [R.T.U. 2013, 2009, 2008]

——

W_ . .
Ans. Phases of Compiler : A compiler operates in phases

each of which transforms the source program to the target
program. A typical decomposition of a compilerare defined

infig.1.

|Carnptl¢r Dulan,',—

Jource Program

(1) AnalysisPhase
(a) Lexical

(b) Syntax

(c) Semantic
(2) Intermediate Code
(3) Code Optimization
{4) Code Generation

Syntax Analyzer

/[Semantic Analyzer |‘\
Symbol-Table i Error

Manager 1 diate Code
Qenerator

Code Optimizer

Target Program '
Fig. 1: Phases of compller

The first three phases, forming the bulk of the analysis
portion of a compiler. Two other activities, symbol-table
management and error handling, are shown interacting
with the six phases of Lexical analysis, Syntax analysis,
Semantic analysis, Intermediate code generation, Code
optimization and Code generation.

Symbol-Table Management : An essential function
of a compiler is to record the identifiers used in the source

program and collect information about various attributes

of each identifier. These attributes may provide information
about the storage allocated for an identifier, its type, its

scope and in case of procedure name, such things as the -

number and types of its arguments, the method of passing
each argument and the type returned.

A symbol table is a data structure containing a record
for each identifier, with fields for the attributes of the
identifier. The data structure allows us to find the record
for each identifier quickly and to store or receive data
from that record quickly.

When an identifier in the source program is detected
by the lexical analyzer, the identifier is entered into the
symbol table.)

Example : In a pascal declaration like :

var position, initial, rate: real;

The type real is not known when position, initial and
rate are seen by lexical analyzer.

The remaining phases enter information about
identifiers into the symbol table and then use this
information in various ways. The code generator typically
enters and uses detailed information about the storage
assigned to identifiers.

"Error Detection and Reporting : Each phase can
encounter errors. After detecting an error, a phase must

—(Co:11)

somehow deal with that error, so that compilation can
proceed, allowing further errors in a source program to be
detected. "

The syntax and semantic analysis phases usually handle
a large fraction of the errors detectable by the compiler.
The lexical phase can detect errors where the characters
remaining in the input do not form afy token of the language.
Errors where the token stream violates the structure rules
(syntax) of the language are determined by-the syntax
analysis phase. During semantic analysis the compiler tries
to detect constructs that have the right syntactic structure
but no meaning to the operation involved; e.g. if we try to
add two identifiers, one of which is the name of an array
and the other the name of a procedure,

The Analysis Phases : As the translation progress,
the compiler’s internal representation of the source
program changes. .

Example : Translation of statement

position ;= initial +rate * 60 &

The “lexical analysis” phase reads the characters in
the source program and groups them into a stream of tokens
in which each token represents a logically cohesive
sequence of characters or a multi—character operator like
i=, the character sequence forming a token is called “lexical
lexeme” for the token. '

The lexical value associated with this occurrence of -

id points to the symbol table entry for rate.

Here we shall use id1, id2 and id3 for position, initial
and rate to emphasize that the internal representation of
an identifier is different from the character sequence ,
forming the identifier. A

Thus we can write the statement as :

idl :=id2 +id3 * 60

Wé consider an intermediate form called
“Three—address Code” which is like the assembly
language for a machine in which every memory location
can act like a register.

Three—address code consists of a sequence of
instructions, each of which has at most three operands.

Example : ;
Fig. 2-shows the representation of statement for each

phase :
position : = initial + rate * 60 e
templ := inttoreal (60) g
temp2 := id3 *templ _/
temp3 := id2 *temp2
idl := temp3

CDAZ {B.Tech. (v C.S. Solved Papers
The “syntax analysis™ imposes a hierarchical = ﬂl'll'l&m'J ;
structure on the token stream, more Specifically in tree : TTERR
i o T Ban
Mantic analysis” phase basically checks the i
source program for the semantic errors iathcr ryt:e = 7N, =
on for sub sequent code Beneration phase, © 2 g
& Position : = injtia] + rate * 60 @

Taxical anglyzer

dl =2 +id3 * 6p

N
e N\

Symbol Table o \m
1 | Position | ._____ I Scmj_-'c P T— 'l

2 | Emital | ¥

3 | Rae vtz B L 2t \+

templ := inttoreal (60)

temp2 := id3 * templ

temp3, :='id2 +temp?2
= id] temp3

l
LCode optimizer ‘]
J l
templ:= id3 * 60
l id1:=id2 +templ

4
LCodc generator —I

MOV F id3,R2
MULF #60, R2
MOV F id2,RI
ADDF R2,RI
+# - MOV F ,Rl,idl

Fig. 2 : Compilatlon of “position : = Initlal + rate *60”

(b)
Fig. 3 : The data Structure in (b) is for the
I

freein (a)
ntermediate Code Generation : After syntax and
semantic analysis, some compilers generate an explicit
intermediate representation of the source program. We
use this intermediate representation for an abstract
machine. This intermediate representation should have two
important properties :

(i) It should be easy to produce.

(i1) Easy to translate into the target program.

We consider an intermediate form called “Three—
address code,” which is like the assembly language for a
machine in which €very memory location can act like a
register. Three—address code consists of sequence of

instructions, each of which has at most three operands.
Three-address code)
templ = inttoreal (60)
temp2 = id3 * templ (1)
temp3 = id2 +temp2
idl = temp3

This intermediate fo
each three-address ins
in addition to the assj
instructions,
which opera

rm has several properties. First,
truction has at most one operator
gnment. Thus when generating these
the compiler has to decide on the order in

tions are to be done; the multiplication
precedes the addition in the Source program, Second, the
compiler m

ust generate a temporary name to hold the
value computed by each instruction. Third, some “three.

address” instructions have fewer than three operands.
Code Optimization : The code optimization phase
attempts to improve the intermediate code, so that faster-
running machine code will result. Some optimizations are
trivial. For example, a natural algorithm generates the
intermediate code (1), using an instruction for each
operator in the tree representation after semantic analysis,
even though there is a better way to perform the same
calculation, using the two instructions

templ :=id 3 * 60)

id1 :=id 2 + temp1 3 «(2)

temp 3 : =id]

- There is nothing wrong with this simple algorithm,

nce the problem can be fixed during the code-
optimization phase. That is, the compiler can deduce that

the conversion of 60 from integer to real representation

si

- =

can be done once and for all at compile time, so the

|Compﬂcr Dwtgn}

inttoreal operation can be eliminated. Besides, temp3 is
used only once, to transmit its value to id1. It then becomes
safe to substitute id1 for temp3, whereupon the last
statement of (1) is not needed and the code of (2) results.

There is great variation in the amount of code
optimization different compilers perform. In those that do
the most, called “optimizing compilers,” a significant
fraction of the time of the compiler is spent on this phase.
Code Generation : The final phase of the compiler is
the generation of target code, consisting normally of
relocatable machine code or assembly coded. Memory
locations are selected for each of the variables used by
the program. Then, intermediate instructions are each
translated into a sequence of machine instructions that
perform the same task. A crucial aspect is the assignment
of variables to registers,

For example, using register 1 and 2, the translation of
the code of (2) might become

MOV F id3, R2

MULF #60, R2

MOV F id2, R1

..(3)
ADDF R2, R1

MOV F RI, id 1

The first and second operands of each instruction
- specify a

source and destination, respectively. The F in
truction tell us that instruction deal with floating-
point numbers. This code moves the contents of the
address id3 into regjster 2, then multiplies it with the real
constant 60. The # signifies that 60 is to be treated as a
constant. The third instruction moves id 2 into register |
and adds to it the value previously computed in register 2,
Finally, the value in register 1 is moved into the address of
id1, so the code implements the assignment in fig.3(b).

each ins

Q.15 (a) What do you understand by
compiler.

(b) Define ambiguity
example.

(c) What do you understand
optimization, and how it is done?

[RT.U. 2017

optimization of

of grammar with suitable

by loop

Ans.(a) Optimization of Compiler : An optimization is

the process of transforming a piece of code into another
functionally equivalent piece of code for the purpose of

Improving one or more of its characteristics. The two most
important characteristics are the speed and size of the
code. Other characteristics include the amount of energy

required to execute the code, the time it takes to compile
the code and, in case the resulting code requires Just-in-
Time (JIT) compilation, the time it takes to JIT compile
the code.

b —@T®)

R
B

Q.19 _P#fiat do you understand by %
Explgin “buffer pairs ”Aand 8 .

[R.T.U. 2013/

o J ‘.ﬁ\ g
reasl= OR
. "‘f’ﬂf: » . . .
—“" Explain the input buffering in brief. ;
~* [R.TU. Dec. 2013]

 v—
R

Ans. Input Buffering

We first mention a two-buffer input scheme that is
useful when look-ahead on the input is necessary to identify
tokens. Then we introduce some useful techniques for
speeding up the lexical analyzer, such as the use of

- “sentinels” to mark the buffer end.]
‘There are three general approaches to the

* | implementation of a lexical analyzer.

1. Use-of lexical analyzer generator, such as the Lex
compiler to produce the lexical analyzer from a regular-
expression bdsed specification. In this case, the
generator provides routines for reading and buffering
the input. _

2. Write the lexical analyzer in a conventional systems-
programming language, using the I/O facilities of that
language to read the input. : ,

3. Write the lexical analyzer in assembly language and
explicitly manage the reading of input, 8
The three choices are listed in order to increasing

difficulty for the implementor. Unfortunately, the harder

to implement approaches often yield faster lexical -
analyzers. Since the lexical analyzer is the only phase of
the compiler that reads the source program character by
character, it is possible to spend a considerable amount of

time in the lexical analysis phase, even though the later .

phases are conceptually more complex. Thus, the speed

of lexical analysis is a concern in compiler design.

Buffer Pairs :

For many source languages, there are times when
the lexical analyzer needs to look ahead several characters
beyond the lexeme for a pattern before a match can be
announced. The lexical analyzers used a function ungetc
to push lookahead characters back into the input stream.
Because a large amount of time can be consumed moving
characters, specialized buffering techniques have been
developed to reduce the amount of overhead required to
process an input character. Many buffering schemes can.
be used, but since the techniques are somewhat dependent
on system parameters, we shall only outline the principles
behind one class of schemes here.

We use a buffer divided into two N-character halves, |

as showr} in Fig.1 Typically, N is the number of characters -
on one disk block, e.g., 1024 or 4096,

e ———————————————————————

CD.20 }—

L]

)
TEE M IM: IC ¢ wid:ieert i - .]
lexeme_beginning T T forward
Fig. 1 : An input buffer in two'halves

We read N input characters into each half of the buffer
vith one system read command, rather than invoking a
ead command for each input character. If fewer than N
haracters remain in the input, then a special character
of is read into the buffer after the input characters, as in
ig.1 That is, eof marks the end of the source file and is
lifferent from any input character. Two pointers to the
nput buffer are maintained. The string of characters
>etween the two pointers is the current lexeme. Initially,
both pointers point to the first character of the next lexeme
0 be found. One called the forward pointer, scans ahead
until a match for a pattern is found. Once the next lexeme
is determined, the forward pointer is set to the character
at its right end. After the lexeme is processed, both pointers
are set to the character immediately past the lexeme. With
this scheme, comments and white space can be treated
as patterns that yield no token.

If the forward pointer is about to move past the
halfway mark, the right half is filled with N new input
characters. If the forward pointer is about to move past
the right end of the buffer, the left half is filled with N
new characters and the forward pointer wraps around to
the beginning of the buffer. -

This buffering scheme works quite well most of the

time, but with it the amount of lookahead is limited and -

this limited lookahead may make it impossible to recognize
tokens in situations where the distance that the forward
pointer must travel is more than the length of the buffer.
For example, if we see

DECLARE (ARG 1, ARG2,.....,, ARGn)

in 2 PL/I program, we cannot determine whether
DECLARE is keyword or an array name until we see the
character that follows the parenthesis. In either case the
lexeme ends at the seocnd E, but the amount of look ahead
needed is proportional to the number of arguments, which
in principles is unbounded. '

Sentinels : If we use the scheme of fig.1 exactly as
shown, we must check each time we move the forward
pointer that we have not moved off one half of the buffer

f we do, then we must reload the other half, That is, our "

code for advancing the forward pointer performs tests
ike those shown in fig.2. ‘ .
if forward at end of first half then begin
reload second half; :
forward : =forward + 1z

{(B.Tech. (V Sem.) C.S. Solved Papers)

:lnsg if forward at end of second half then begin
reload first half; :
move forward to beginning of first half
end
else forward : = forward + 1;
Fig. 2: Code to advance forward pointer)
Except at the ends of the buffer halves, the code in
fig.2 requires two tests for each advance of the forward
pointer. We can reduce the two tests to one if we extend
each buffer half to hold a sentinel character at the end.
The sentinel is a special character that cannot be part of
the source program. A natural choice is eof; fig.3 shows

the same buffer arrangement as fig.1, with the sentinels
added. : i

C_ = =

‘M e eoffC ;a2 eof eof]
I Jorward ;

lexeme_beginning
Fig. 3 : Sentinels at end of each buffer half
Most of the time the code performs only one test to
see whether forward points to an eof. Only when we
reach the end of a buffer half or the end of the file do we
perform more tests. Since N input characters are

encountered between eof’s, the average number of tests
per input character is very close to 1.
forward := forward +1;
if forward T = eof then begin
if forward at end of first half then begin
reload second half;
forward := forward + 1;
end t @

else if forward at end of second half then begin
reload first half; -

_move forward to beginning of first half
end ' :
else /* eof within a buffer signifying

terminate lexical analysis

end of input */
end '

Flig. 4 : Lookahead code with sentinels
We also need to decide how to process the character
Scanned by tl:ng forward pointer; does it make the end of a -
en, does it represent progress in finding a particular
k at? One way to structure these tests is to

Use a case statement, if the implementation langua,
one. The test if forward 1 = guage has

ases,

=eof can then be im 1
'as one of the different ¢ , e

Qaa

Previous YEARs QUESTIONS

- 1
2018 '
ConsNder the augmented expression grammar
IL \ > given below :
| & ‘/:/." E'- E ’

S E->E+TT : i .
/k\\ T—>T*F/F

LN Fo(Bvd

//'.

If I is the set of two items[E’-—»IE] and [E - E

/. + T], then calculate - goto (I, +) [R.TU. 2013]

’_\///’h Ans. If 1 is the set of two items {[1-3‘ —E]L[E->E. +
£ T]}, then GOTO (I, +) contains the items

? i ' 2

-..\) .

E-E+.T

T->.T=*F

T->.F

F - (E)

" F->.id

We computed GOTO (I, +) by ex&nining I foritems,
with +immediately to the right of the dot. E' — E is not
such an item, but E —» E. + T is. We moved the dot over

yghe + to get E — E + .T and then took the closure of this

ingleton set.
FaETTTCRT ——h

/ Whaf do you mean by parsing?

=

Ans. Parsing : Parsing is the “ process of detennixﬁng”
if a string of token can be, generated by grammar.
There are different parsing method that can be applied
to construct Syntax - directed translation.
Basically — * top down method “ and
bottom-up method,” for parsing.

is the role of parser? ‘/

QOE

— ———
Ans. The Role of the Parser : The parser obtains a
string of tokens from the lexical analyzer and verifies that
the string can be generated by the grammar for the source
language.

T W L
n FIRST and FOLL(? approach

Ans. FIRST and FOLLOW : The construction of

. predictive parser is aided by two functions associated with

grammar G. These functions, FIRST and FOLLOW, allow
‘us to fill in the entries at a predictive parsing table for G
whenever possible. .

Q5 WE{ is predictive parsing? \ /

~ Ans. Predictive Parsing : Recursive - descent parsing

is'a top-down method of syntax analysis in which we
execute a set of recursive procedures to process the input.
A special form of RecursiVe - descent - parsing is called
predictive parsing, in which the look-ahead symbol
unambiguously determines the procedure selected for each
non-terminal. '

ll 'I

o e)

Q.6) What do you mean by context free grammar?
=’ Give distinction between regular and context free
' grammar and limitations of context [ree

grammar. [R.T.U. 2018, 2012, Raj. Univ. 2006]

e

CD.24

OR
Write down a short note on the Context free
grammar. [R.TU. 2018, Dec. 2013}

Ans. Context-free Grammars : Many programming
language constructs have an inherently recursive structure
that can be defined by context-free grammars. For
example, we might have a conditional statement defined
by a rule such as :

If S, and §, are statements and E is an expression,
then :

!

“if E then S, else S,” is a statement. ...(1)

This form of conditional statement cannot be specified

using the notation of regular expressions; we saw that

regular expressions can specify the lexical structure of

tokens, using the syntactic variable stmt to denote the

class of statements and expr the class of expressions, we
can readily express (1) using the grammacproduction

stmt — if expr then stmt else stmt wd2)

A context-free grammar (grammar for short) consists

of terminals, non-terminals, a start symbol and productions.

1. Terminals are the basic symbols from which strings

are formed. The word “ token™ is a synonym for
“terminal” when we are talking about grammars for
programming languages, each of the keywords if, then
and else is a terminal.

2. Nonterminals are syntactic variables that denote sets
of strings. Stmt and expr are non-terminals. The non-
terminals define sets of string that help define the
language generated by the grammar. They also impose
a hierarchical structure on the language that is useful
for both syntax analysis and translation,

3. In a grammar, one non-terminal is distinguished as
the start symbol and the set of strings it denotes the
language defined by the grammar.

4. The productions of a grammar specify the manner in
which the terminals and non-terminals can be
combined to form strings. Each production consists
of a non-terminal, followed by an arrow (sometimes
the symbol ::=is used in place of the arrow), followed
by a string of non-terminals. 5 ‘

Regular Expressions vs. Context-Free Grammars :
Every construct that can be described by a regular

expression can also be described by a grammar. For

example, the regular expression (a| b)* abb and the
grammar ;
Ag> aAg| bAg | aA,
Ai-') bA2| ' '
A;—> bA,
W A3 —> €

(B.Tech. (V Bem.) C.5. Solved Papers)

describe the same language, the set of strings of 2s and

b’s ending in abb. We can mechanically convert a

nondeterministic finite automaton (NFA) into a grammar

that generates the same language as recognized by'the

NFA. For each state i of the NFA, create a non-terminal

symbol A;. If state i has a transition to state j on symbol a,

introduce the production A; — aA;. If state i goes to state

joninput € , The production A; — A;. If i is an accepting
state, introduce A, — €. If i is the start state, make A; be
the start symbol of the grammar.

Since every regular set is a context-free language,
we may reasonably ask, “Why use regular expressions to
the lexical syntax of a language”? There are several
reasons:

1. The lexical rules of a language are frequently quite
simple and to describe them we do not need a notation
as powerful as grammars.

2. Regularexpressions generally provide a more concise
and easier to understand notation for tokens than
grammars. _

3. More efficient lexical analyzers can be constructed
automatically from regular expressions than from
arbitrary grammars.

4. Separating the syntactic structure of a language into

lexical and nonlexical parts provides a convenient way

-of modularizing the front end of a compiler into two

manageable-sized components.

s

—_—

Q.7 Show whether the following grammar is LL(])
or not
E 5> TE/+TE/ e
T > FI/*FT/ e
F — (E)/id
And explain the model of a predictive parser.
[R.T.U. 2018, 2012]

— —

Ans. With the help of the grammar above, we can generate
predictive parsing table

Non-Terminal Input Symbol
Id + * () s
E| E» | Es+ E-> |E> | E->
TE TE TE €
T| T-» [Toe| To* T-> | T-
FT FT € &
F| Fo> Fo
id (E)
Parsing Table (M) for Grammar

A grammar whose parsing table has no multiply —
de‘ﬁned entries is said to be LL(1). This grammar for
arithmetic expression is LL(1).

R | A

—{CD.25)

Compiler Design
“A predictive parser is an efficient way of
implementing recursive descent parsing by handling
the stack of activation records explicitly”. Model of
predictive parser is given below :

Lx[+1y[+z[8] input

Stack

Program Out
put
| B Parsing ———>
Table
Fig.

The table-driven parser can be implemented using an
input buffer, a stack and a parsing table.
* The input buffer is used to hold the string to be
parsed.
This string is followed by *$’ which is used as a
right end marker to indicate the end of the input
string. .
® Thestack is used to hold the sequence of grammar
symbol. ‘$* indicates bottom of the stack. Initially,
the stack has the starting symbol of the grammar
above ‘§’ .
* The parsing table is a two- dimensional array T
[A, a] where A is the non- terminal and a is either
a terminal or §$.

The parser is controlled by a program that behaves as
follows :

The program determines X (the symbol on top of the
stack) and a (the current input symbol). These two symbols
decide the action of the parser. There are three
possibilities :

L If X=a=S§, the parser announces successful

completion of parsing and it halts.

2. IfX=2a=%$, the parser pops X off to the stack
and advances the input pointer to the next input
symbol. :

3. IfXisanon- terminal, the program consuits the
entry T [X, a] of the parsing table T, This entry N
will be either a X — production or an error entry.
KTIX, a] = {X - UVWj} then the parser

replaces X on top of the stack by WVU (with U
on top.) If T [X, a] = error, the parser calls error
recovery routine,

There should not be any production with right side
containing symbol €. _ '
No production can contain two adjacent on the right

side. -
Operator precedence passing use there distinct

/ " a short note o
pagser for regular expres

Ans. Operator Precedence Parser : It is bonomTp

parser which handles only a small class of grammars as
defined below :

) ’ ; l - 'Mﬁl.., .

precedence relation, <-, =,-> as defined below :
Relation Means
a<b a gives precedence to b
a=b a has some precedence as b
a>b a has more precedence than b
Example : E — E+E|E. E[E*E|E[E
E - EIE
E — (E)
E— -E
E—-id
have to parse the string id + id * id, then
lid + * §
id > > >
+l< > < >
* < > > >
$ | < <

Stepl:$<id>+<id>*<id>$

Step 2 : Scan from left to right till first > is encountered.
Step 3 : Sun backward till <- is encountered.

Step 4 : ByStep 2, and Step 3, we have id as a terminal
and it can be reduced using

E—id
E+<id>*<id>§

Step S : Repeat step 2 to we have i

E+E*<id>§

Step 6 : Similarly

E + E*E

Now non terminal can be removed as follows :

Step7:5<+< >3

Step 8 : Repeating the above process,
$<+>8$ByE - E*E)

Step 9 : and $% By (E — E+E)

"

=

‘_\‘

T ,/

= S —
) Write down a short no,

e —— i —

R parser, {

CC Error Handling : Error handling is an

extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it
may be necessary to reclaim parse tree storage, delete or
alter symbol table entries, and, typically, set switches to
avoid generating any further output. .-

Itis seldom acceptable to stop all processing when

an error is found; it is more useful to continue scanni

. e

(CD.26)

general class of algorithms to do this involves discarding
a number of tokens from the input string, and attempting
to adjust the parser so that input can continue.

To allow the user some control over this process,
YACC provides a simple, but reasonably general, feature.
The token name “error” is reserved for error handling.
This name can be uged in grammar rules; in effect, it
suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters
a state where the token “error” is legal. It then behaves
as if the token “error” were the current lookahead token,
and performs the action encountered. The lookahead token
is then reset to the token that caused the error. If no special
error rules have been specified, the processing halts when
an error is detected.

In order to prevent a cascade of error messages,
the parser, after detecting an error, remains in error state
until three tokens have been successfully read and shifted.
If an error is detected when the parser is already in error
state, no message is given, and the input token is quietly
deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser
would attempt to skip over the statement in which the
error was seen. More precisely, the parser will scan ahead,
looking for three tokens that might legally follow a
statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement, and
end up reporting a second error where there is in fact no
error. '

Actions may be used with these special error rules.
These actions might attempt to reinitialize tables, reclaim

*-symbol table space, etc.

Error rules such as the above are very general, but
difficult to control. Somewhat easier are rules such as

stat : error ‘;’

Here, when there is an error, the parser attempts
to skip over the statement, but will do so by skipping to
the next “;’. All tokens after the error and before the next
‘.’ cannot be shifted, and are discarded. When the *;’ is
seen, this rule will be reduced, and any “*cleanup” action
associated with it performed.

Another form of error rule arises in interactive
applications, where it may be desirable to permit a line to
be reentered after an error. A possible error rule might be

input : error ‘\n’ { printf(“Reenter last line: **);

") input { $$=$4; }

There is one potential difficulty with this approach;

. the parser must correctly process three input tokens before

it admits that it has correctly resynchronized after the

~(B.Tech. (V Sem.) C.S. Solved Papers)
error. If the reentered line contains an error in the first
two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this
reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered
from. The statement
yyerrok ;

in an action resets the parser to its normal mode. The last
example is better written

input : error ‘\n’

{ yyerrok;

printf(“Reenter last line: *); }
input

{$5=84;);

As mentioned above, the token seen immediately
after the “erfor” symbol is the input token at which the
error was discovered. Sometimes, this is inappropriate;
for example, an error recovery action might take upon
itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared.
The statement .

yyclearin ;

in an action will have this effect. For example,
suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the
user, that attempted to advance the input to the beginning
of the next valid statement. After this routine was called,
the next token returned by yylex would presumably be
the first token in a legal statement, the old, illegal token
must be discarded, and the error state reset. This could
be done by a rule like

stat : error { resynch();
yyerrok ;
yyclearin ; } ;

These mechanisms are admittedly crude, but do
allow for a simple, fairly effective recovery of the parser
from many errors; moreover, the user can get contro! to

deal with the error actions required by other portions of
the program.

Q.10 Construct LALR parsing table for the following
grammar.
S 2 A4

A—>aAdl|b [R.T.U. 2017)

E———
Ans. LALR Parser : LALR parser are same as CLR
parser with one difference. In CLR parser if two states
differ only in lookahead then we combine those states in
LALR parser. After minimisation if the parsing table has
no conflict that the grammar is LALR also

Eg:

consider the grammar S ->AA
A->aAlb

R e i

D
/1

L e a short note on ggerdtorlrecedenfe v
‘ mg and function. [R.T.U. 2016/ ¢

A

/

Ans Operator Precedence Parsmg

Operator Grammar : The grammar is handle by
operator precedence parsing have the following property:

1. There should not be any production with right side
containing symbol Null (E).

2. No production can contain two adjacent non-
terminal on the right side.

3.2 1t use three disjoint precedence relation <.,.= & -> .

4, If the grammar is ambiguous then only operator
' precedence can parse the grammar.

Relation | Meaning

a<-b 'a' yields precedence to 'b'
a=b 'a’ has equal precedence as 'b’
a>b |’ takes plecedence over 'b’

Example : Construct operator precedence grammar.
E>E+E/E*E/id and Input — id + id*id$

-
~

Y

1Y LA | Ad
Pk sy 1
ol h_.l?'j_‘”

e ofsr

o N oy ¥y
! X . ¢ . k-

@z

Operator Relation Table :
' id + * $
Higher Precedence Table — id | — > > >
: + | < > < >
sl > > >
Lower Precedence Table > § | < < < -
Size of Table (n?)
E E E.
- [Tid[+]id] » [id]
Stack E+E*E

(i) add $ in stack.
(i) check operator table for entry [$, id] if less
.precedence push otherwise pop.
(iif) Repeat this step untill the end of string.
Operator Function :
Row is denoted by function =g
Column is denoted by function=f

No cycle in this graph ~
. Longest path
fy—>g—>F =g K
gy~ fhog g2l >FK
_ Function Table
Jid |+ | S| *
fl| 4.2 0} 4
. g‘ 5 1 O_ 3

Advantages : ST -
() Size of function table is less then 2n relation

- (i) Blnnkmuyisprese!lt_inrelaﬁpgwhi_chisknqwn
""" gs érror, which are less in function table.

o

[

Y

=)

(Camp!ler De.sign:

Ans. (i) FIRST and FOLLOW
FIRST(E) = FIRST(T) = FIRST(F) = {(, id}
FIRST(E') = {+, €}
FIRST(T') = {*, €}
FOLLOW(E) = FOLLOW(E") = {), $}
FOLLOW(T) = FOLLOW(T") = { +,), $}
FOLLOW(F) = {+, *,), §}

(ii) Predictive parsing table for Grammar G

Non- Input-Symbol
Terminal | id + * () S
E E— E— :
TE' TE'
E E' >+ E' —»>elE'— e
3 TE‘
T T- T—
FT' FT'
T Toe|T—> ToeT'—e
tF'["
F F- F—
id (E)
Part-C

itedown a short note on the difference between
tom _up and top down parsing with suitable
. ‘ example. —TR.T.U. 2018, Dec. 2013, 2008/

Expl-m‘n top dowh and bottom up parsing
techniques in detail. [RT.U. 2012}

#—_—

Ans. Top-down Parsing : For a given input string, top-
down parsing attempt to derive a string identical to it by
successive application of grammar rules to the grammar's
distinguished symbol.

When such a string is obtained a tree representing

its derivation would be the syntax tree for the input string.
Thus if w is the input string, a top-down parser determines
a derivation sequence.

Where s is starting non-terminal in given grammar.
Basically top-down parsing attempts to find the left
most derivation for the input string w, since string w is
scanned by the parser left to right, one Symbol/Token ata
time and the left-most derivations generate the leaves of
the parse tree in left-to-right order, which matches the
input scan order.J ;
For example
V) = {expr, term, rest}
V,={+-0,1,2,3,45, 67,89, €}

rest— + term rest |-term rest | e

term —» 0| 1]2]3|4|5|6]7|8]9

If we want to show the construction of the parse
tree for the input string 9 — 5 + 2, then parse tree is as
follows::
expr

A~ 7275
@ i (®) /\ () torm - rest

9
expr /cx]:u'\
; /\:csi term rest
o B o S
0 L ferm pest 2 - te}m rest

(k) = term rest
vy
2 €
Fig.
So in this manner we show the input string by top-
down parsing.

Bottom-up Parsing : Bottom-up parsing is an attempt
to reduce the input string W to the start symbol of a
grammar by tracing out the right-most derivations of win
reverse. This is equivalent to constructing a parse tree
for the input string w in the reverse order.

Bottom-up parsing involves the selection of a
substring that matches the right side of the production,
whose reduction to the non-terminal on the left side of the
production represents one step along the reverse of aright
most derivation, That is, it leads to the generation of thg
previous right most derivation.

expr —» term test

{CD.29)

o b

A

(' (; {J U

L&

(s

.

(s

€ «
"'

C
(p

(p (» (p 1y

y

D)P N O O ¢

()

||

O U

f

{

AN 6N

O U

Fe

o I,
-
U

(cb.30)
For Example :
Consider the grammar
S— aTUe
T - Tbe/b
Uad
and let us find out the right most derivation of the

* sentence for the string abbede.

S= aTUe
=alde
=albcde
=—abbcdg -
” - # =
Q.16 GIe the model J: LR parser and explain its
“dctions.) JR.TU. 2016/

OR

\/ What do you mean by LR parser? What is the

model of an LR parser? Explain. [RTU. 201 i
[

Give the model for LR parser and explain its
[Raj. Univ. 2005, 2004/

. The LR Parsing Algorithm

_ VIt consists of an input, an output, a stack, a driver

p}qg:ram and a parsing table that has two parts (action
and goto). The driver program is the same for all LR
parsers; only the parsing table changes from one parser
to another. The parsing program reads characters from
input buffer one at a time. The program uses a stack to
store a string of the form soX5, X387+ XS where s is
on top. Each X, is a grammar symbol and each s, is a
symbol called a state.

Each state symbol summarizes the information

contained in the stack below it and the combination of the

state symbol on, top of the stack and the current input
symbol are used to index the parsing table and determine
the shift- reduce parsing decision. In an implementation,
the grammar symbols need not appear on the stack;
however, we shall always include them in our discussions
to help explain the behavior of an LR parser.

The parsing table consists of two parts, a parsing

~function action and a goto function. The program driving

the LR parser behaves as follows. It determines s, the
state currently on top of the stack and a, the current

input symbol. It then consults action [s, a,), the parsing
action table entry for state s, and input a, which can
have one of four values :

1. Shifts, where s is a state,

2. Reduce by a grammar production A— B,

3. Accept and

4. Error
The function goto takes a state and grammar symbal

as arguments and produces a state, the goto function of 3

- om W

maost derivation of the

rser and explain its
IR.TU. 2016}

rarser? What is the
plain. (RTU 2013]

ser and explain its
[Raj. Univ. 2003, 2004]

ut, a stack, -a driver
as two parts (action
he same for all LR
ges from one parser
ads characters from
ram uses a stack to

ve XiSme Where s is
ol and each s; is a

's the information
:combination of the
«d the current input
table and determine
an implementation,
pear on the stack;
n in our discussions
. parser.

vO parts, a parsing
he program driving
determines s,, the
and a;, the current
'S &), the parsing
wput a;, which can

onA—f3,

i grammar symbol
goto function of a

: ~—(B.Tech. (V Sem) C.S. Solved Papers)
parsing iabl:_a constructed from a grammar G using the
SLR, canonical LR or LALR method is the transition
fmcqou of a deterministic finite automaton that recognizes
the wal?le prefixes of G which are those prefixes of ri ght-
sentential forms that can appear on the stack of a shift-
reduce parser, because they do not extend past the right
most handle. The initial state of this DFA is the state initial ly
put on top of the LR parser stack.

Input ["_'l_ Ty [vabia [$]

Stack S LR
—— Parsing Program

Y 1
Na -1

acton 0lo
fu &

Fig. 1 : Model of an LR parser

A configuration of an LR parser is a pair whose, first
component is the stack contents and whose second
component is the unexpended input :

(so X 8y X3 85.. Xpp Spo 8 814y .. 2,8)

This configuration represents the right-sentential form

. X| Xz....Xma,-ai+|...an

in essentially the same way as a shift-reduce parser
would, only the presence of states on the stack is new.

The next move of the parser is determined by reading
a,, the current input symbol and s, the state on top of the
stack and then consulting the parsing action table entry
" action [s, a;]. The configurations resulting after each of
the four types of move are as follows:

1. If action [s,, a;] = shift s, the parser executes a
shift move, entering the configuration

(so X; s X383 X S 8 S, 8j4y... 8, $)

Here the parser has shifted both the current input
symbol a; and the next state s, which is given in action
[sm 8;], onto the stack; a;,, becomes the current input
symbol. ; :
2. If action (s, a;] = reduce A— B, then the parser
executes a reduce move, entering the configuration

(so X151 X252 -+« Xinr SmcAS, 8 854 ... 8,)

where s = goto [s, , A] and r is the length of B, the
right side of the production. Here the parser first popped
2r symbols off the stack (r state symbols and r grammar
symbols), exposing state s;,_. The parser then pushed both
A, the left side of the production and s, the entry for
goto [s,,_, A, onto the stack. The current input symbol is
not changed in a reduce move. For the LR parsers we
shall construct, X,,_4; ... Xp the sequence of grammar
symbols popped off the stack, will always match 3, the
right side of the reducing production.

———= Output

8

(Compiler Design)-

The output of an LR parser is generated after a reduce
move by 9xecuting the semantic action associated with
the reducing production. For the time being, we shall
assume the output consists of just printing the reducing
production.

3. If action [sy, 8;] = accept, parsing is complete.

4. If action [s, a;] = error, the parser has discovered
an error and calls an error recovery routine.

The LR parsing algorithm is summarized below. All
LR parsers behave in this fashion; the only difference
between one LR parser and another is the information in
the parsing action and goto fields of the parsing table.

LR Parsing Algorithm

Input : An input string w and an LR parsing table
with functions action and goto for a grammar G.

Output : If w is in L (G), a bottom-up parse for w;
otherwise, an error indication.

Method : Initially, the parser has s; on its stack, where
s, is the initial state and w§ in the input buffer. The parser
then executes the program in Fig. until an accept or error
action is encountered.

set ip to point tg the first symbol of w$;
repeat forever begin
let s be the state on top of the stack and
a the symbol pointed to by ip;
if action [s, a] = shift s' then begin
push a then s’ on top of the stack;
:advance ip to the next input symbol
end :
else if action [s, a] = reduce A— B, then begin

pop 2 * | B | symbols off the stack;
let ' be the state now on top of the stack;
push A then goto [s', A] on top of the stack;

output the production A— B,
end
else if action [s, a] = accept then
return
else error ()

- end _ :
Fig. 2: LR parsing program

Q.17 Explain why Bottom-up ﬁarsing is more
generally applicable then top-down parsing?
’ [R.T.U. 2015]

Ans,. Differ
up parsers:

To
Start at thy
derivation

Picks a pr
tries to m:

May requ!

backtrack

Some gra
| backtrack
Top dow
can’t han
recursion

not termi
Ina
start symbi
to reach th
to use con
guessworl
Mo
which sca
right) whe
) Tyi
input to gu
can ultim:
tokens. F¢

we
the next
guarantes
input chi
productic

Sc
that we b

Tt
copies ol
characte
If we ct
choose t
WIong.
producti
nonterm
match i

recursic

e ————

. Code : When three address code is generated,

G

Syntax trees for assignment state;
by the syntax directed definition. Non
&n assignment statement

Three Address Code t Three address code is a
Sequence of statements of the general form.
=yopz
where X, y and z are names, constants or compiler-
generated temporaries, ‘op’ stands for any operator,

Thus a source language expression like x + y ¥ zmight
be translated into sequence

ments are produced
-terminals generntos

ti=y*z
=Xty
where t,

and t, are compiler generated temporary
names, :

Syntax Directed Translation Into Three Address

temporary

names are made up for the interior nodes of a syntax

tree. The value of non-terminal, E on the lefi side of
E— E,+E, will be computed into a new temporary t.

Declarations : As the sequence of declarations in a

_procedure or block is examined, we can layout storage
for names local to the procedure,

For each local name, we create a symbol table entry

with information like the type and the relative address of
the storage for the name,

The relative address consists of an offset from the

base of the static-data area or the field for local, data in
an activation record,

Il
|

%

’\Qy /f)re syntax directed definition for a given
~/as. .

signment statement,
id=E _/z

E+E

B |

[R.T.U. 2016/

{(11.Tech. (v tiem.) O.8. Solved Papers)

Keeping Track of Scope Informafion : In o
langunge with nested procedures, names local to ench
procedure can be assigned relntive nddresses using the
approach of procedure, When a nested procedure is seen,
processing of declarations in the enclosing procedure is
temporarily susponded. A new symbol table is created
when a procedure declaration is seen and entries for the
declaration are created in the, new table, The new table
points back to the symbol table of enclosing procedure,
the name reprosented by id itself is local to the enclosing
procedure,

Assignment Statements : Expressions can be of
type integer, real, array and record, As part of the
translation of nssignment into three address code, we show
how names can be looked up in symbol table and how
clements of array and records can be nccessed,

1. Names in Symbol Table : We formed three address
statements using names themselves, with the
understanding that the names stands for pointers to their
symbol table entries. The translation scheme shows how
suc™ svmbol table entries can be found.

2. Recusing Temporary Names : We have been going
along nssuming that “newtemp” generates a new temporary
name each time a temporary is needed. It is useful especially
in optimizing compilers, is actually create a distinct name

cach time “newtemp” is called,
However, the temporaries used to hold intermediate
values in expression calculations tend to clutter up the

symbol table and space has to be allocated to hold their
values, :

PREVIOus YEARs QuUEsTIONS

Ans. .
Grammar Semantic Rule]
S—id=E S.val = id.lexval = E.val
E — E+E E.val = E val + E.val
E— E*E g = E.val* E.val A
E—-E !_E:'.ﬂv_alﬁB.val .
E - (E) E.val=E.val
E—id E.val=id lexval

e —————————

Q2 What is type system?

L~
%
Ans. Type System : A type system'is a collection of

rules for assigning type expressions to the various parts
of program, A type checker implements a type system,

(éompiur n-;-l-@—
e

——— T
W:I;;M are the beneflis of using a :{r_«tc.;lﬂr_n'
Andependent lnrrrmrd.'ntrtr form? |\~

?mil(ctmcum is facilitated, a compiler for a different
machine can be ereated by attaching a back end for
the new machine to an existing front end

2 Amachine-independent code optimizer can be applied
to intermedinte representation

—

0.4 :ﬂim' dependency graphs. \ z ! E ,ZE f5 3

Ans. Dependency Graphs ¢ If an attribuf@ b at a node
in a parse tree depends on an attribute C, then the semantic
rule for b at that node must be evalunted after the semantic
rile that defines C,

The interdependencies among the inherited and
synthesized attributes at the nodes in a parse tree can I:c
depicted by a dirccted graph called a “dependency graph

Ans. L-Attributed Definitions

Any

I'he
e

[T
P |
Wy
Hu

- |

fo
(v

A syntax-directed definitions is L-attributed if ench
inherited attributed of X,,1<j < n,on the right side of A -»
X, X;....X,, depends only on :

I. The attributes of the symbols Xy X0 Xy 10 the
left of X, in the production and
2. The inhetited attributes of A,

Every S-attributed definition is L-attributed, because

the restrictions (1) and (2) apply only to inherited attributes

ParT-B

Q6 Let G be a formal grammar with nonterminal
symbol S and D, terminal symbol ‘b’, ‘0’
‘1', start symbol S and the
rule.

S > b
D - oD
D- ID
D ¢
D— 1]

(a) Is G regular ? Why (not) ?

and
Jollowing production

) Turn G Systematically into a finite
IRT.U. 2018, 2014)

automation,

%

—{(B.Tech. (V Sem.) C.5. Solved Papers)

a=_t0;
_L0: _tl = 10;
R=a< tl;
IfZ _t2 Goto _L1;
B=2
M =a% 13;
_15=0;
_t6 = _td= t5;

PushParam _t6;
LCall _PrintBool;

PopParams 4;
t7=1
8 =a+ 17,
a= _t8§;
Goto _L0;
_L1:
EndFunc;

). What'do you mean by DAG? Write an algorithm
for constructing a DAG. JR.T.U. 2013}

OR
Write short notes on DAG. [R.TU. 20\b/

Ans. Directed Acyclic Graphs
Directed acyclic graphs (DAGs) are usual data
structures for implementing transformations on basic
blocks. A DAG given a picture of how the value computed
by each statement in a basic block is used in subsequent
of the block. Constructing 2 DAG from three-address
statement is a good way of determining common .sul.)-
expression (expression computed more thaq once) within
a block, determining which names are used into the blqck
but evaluated outside the block and determining which
statements of the block could have their computed value
used outside the block. _
'A DAG for a basic block (or just DA(;)! isadirected
i h with the following labels on nodes :
mly.chcg\ees are labeled by nnique identifiers, either
variable names or constant. From the operated
applied to a name we determine whether the -value
or r-value of a name is needed; most leaves
represent r-values. The leaves represent initial value
of name and we subscript them will 0 to avoid

confusion with labels denoting “current” values of

names as in (3) below.
. 2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally giw_:n a sequence _of
identifiers for labels. The intention is that interior

nodes represent compute values and the identifiers
Iabeling a node are deemed to have that value.

Compiler Design

It is important note to confuse DAGs with flow graphs.
Each node of a flow graph can be represented by aDAG,
since each node of the flow graph stands for a basic block.

Flg. : An example DAG
DAG construction

To construct a DAG for a basic block, we process
each statement of the block in turn. When we see a
statement of the formx : = y + z, we look for the nodes
that represent the “current” values of y and z. These could
be leaves or they could be interior nodes of the DAG if y
and/or z had been evaluated by previous statements of
the block. We then create a node labeled +'and give it
two children; the left child is the node for y, the right the
node for z. Then we label this node x. However, if there
is already a node denoting the-same value as y + z, we do
not add for new node to the DAG, but rather give the
existing node the additional label x.

Two details should be mentioned. First if x (not x,)
has previously labeled some other node, we remove that
label, since the “current” value of x is the node just
created, Second, for assignment such as x : =y we do not
create a new node. Rather, we append label x to the list
of names on the node for the “current” value of y.
Algorithm Construction a DAG
Input. A basic block .

Output. A DAG for the basic block containing the
following information:

1. A label for each node. For leaves the level is an
identifier (constants permitted) and for interior
nodes, an operator symbol.

2. For each node a (possibly empty) list of attached
identifiers (constants not permitted here).

‘ Explain the syntax directed translation schemes
in details. [RT.U. 2014]

m
Ans. Syntax Directed Translation (SDT) : It makes
the user life easy by hiding many implementation details

and free the user having to specify explicitly the orderin

which translation takes place.

The translation of token string takes place by
evaluating semantic rules, it is not necessary to follow
syntax directed definition, it can be implemented in a single
pass by evaluating semantic rules during parsing itself,

Translation scheme indicates the order of evaluation
of semantic action associated with a production rule. In
other words, translation scheme gives a little bit important
about implementation detail.

We can point out syntax directed translation as;

(i) Intermediate code represented as a list of
instructions. Instruction sequences are
concatenated using the operator ||.

(ii) Attributes for expression B :

» E. place : denotes the location that holds the

value of E.
* E.code: denotes the instruction sequence that
evaluates E.
(i) Attributes for statement S ;
¢ 5. beégin : denotes the first instruction in the

code for S.

¢ S. after: denotes the first instruction after the
code for S. ‘

* S.code: denotes the instruction sequence that
represents S,

(iv) Auxiliary Functions:
¢ newtemp () : returned a new temporary each
time it is called. o
Retumns a pointer to the ST entry of a temp.
May take a parameter specifying the type of
the temp. ' !
s newlabel () : returns a new label name each
“time it is called.
(v) Notation : we write
gen(x :="y‘+' 2)
to represent the instruction x: =y +z
Example : For the boolean expression a < b or ¢ < d
and e <f perform SDT scheme.

- Solution : The SDT scheme based on parse tree becomes :

00 : ifa<bgoto 03

01 :tl=0

02 :goto04

03 :tl=]

04 :ifc<dgoto 07
05 :2=0

06 :goto08

07 :12=1

08 :ife<fgotoll
09 :13=0

10 :goto12

1 :8=1

12 :t4=t2and 3

13 :t5=tl ort4

{B_Tgch. (V Sem.) C.S. Solved NP"_J'

hat is the process and importance of
intermediate code generation. [R.TU. 2014}

i

Ans. Code generation is the process by which a compiler’s
code generator converts some intermediate representation
of source code into a form that can be readily executed
by a machine. _
The input to the code generator typically consists
of a parse tree or an abstract syntax tree. The tree is
- converted into a linear sequence of instructions ,usually in
an intermediate langumge such as three address code.
. Tasks which are part of code generation phase
inchide: ' 7 ' ‘
(i). Instructions Selection : which instruction to use.
(i) Instructions Scheduling : In which order to put
those instructions, '
(iii) Register Allocation : The allocation of variables
to processor registers.
(iv) Debug Data : Debug data generation if required
so the code can be debugged,
Instruction selection is typically carried out by doing
d recursive post order traversal on the abstract syntax

tree, matching particular tree configuration against
templates,

For eg: the tree [W := ADD (x, MUL(y,z))| might
. be transformed into linear sequence of instructions by

recursively generating the sequences for and .
t2 . = MUL (y,2), and then emitting the instruction

[ADD W, 11, 2].

; In a compiler that uses an intermediate language,
- +"there may be two instruction selection stages-one to
convert the parse tree into intermediate code, and a

second pﬁase much later to convert t}xe intermediate codf.t:
into instructions from the instruction set of the targe
machine.

Q.12 Give a syntax-directed definition to translate
infix expression into infix expression w'lrhoul
redundant parenthesis. For example, since +
and *, Associate to the left, ((a*(b+c))*(d)) can
be rewritten as a*(b+c)*d. [R.T.U. Dec. 2013

Ans. S - E
E. iop=nil
S. equation = E. equation
E — E subone + T
E subone. iop = E. iop
T.iop=E. iop
E. equation = E subone. equation || ‘+' || T.
equation
E. stop = ‘4’
E->T
T.iop=E. iop
E. equation =T. equation
E. sop=T. sop
T — T subone * F
T subone. iop = *
F.iop=‘*

[
/f (
%)
13
T. equation =T subone. equation || ‘+" || F. equation
T.sop=‘*
T->F '
F.iop="T. iop
T. equation = F. equation _
T.sop=F. sop
F — Char '
F. equation = Char. lexyal
F. sop =nil
F - (E) ’
if(F.iop==‘*g&g& E.sop==+‘4") {F.equation =
“(* Il E. equation || *y } A
else {F. equation=E, equation}
F. sop =nil

short note on S-attribus definitions and W/
~attributed defmin'ﬂl!."‘_g [RTU. 2011) '
i OR L
Write short note on Synthesized attribute, WY/

[R.T.U. 2013, 2010, 2008/

EP : (Compiler Design

Ans. Synthesized Attributes : An attribute at a node is

;:Ztet:rwe(: synthesized if its value is computed from the attributed
y values of the children of that node in the parse tree.
Example : E—=E, +E,
ransiote E.val=E, val + E,val — semantic rule
without E
since + Val
“(d)) can
Dec. 2013] \
Ej val + E, Val
here E.val is synthesized attribute
: "\, Synthesized attribute
et I “\-at this node. -

Synthesized attribute can be evaluated by a single
/‘ _ bottom-up traversal of the parse tree.,
' . Synthesized attributes also refer as s-attributes.
Synthesized attributes also define in the L-attributes.

‘'Grammar containing only synthesized attributes is
called S-attributed".

Synthesnzed attributes can be conveniently handled
during bottom up parsing as it builds the parse tree bottom-

. 'j : n the other hand grammar for which the attributes
_ an glways be evaluated by a depth-first. L-to-R traversal
parse tree, is called L-attributed grammar. -

ttributed Definitions : Refer to Q.5.

cha
int |
pus
s[+

che

ret

int |
SW1
cas
ret
cas
ret
cas
cas
ret
cas
cas
reti

int n
chai
int i
prin
scat
pusl
whi
if (
pu:
else

else

- boolean

void and

ig. 3. The
les of an
e second
tional and
ZITOTS are
 sequence
ement has

ation of a.

production -

on of one

ating type

mented by .

16 Mrauslate the arithmetic expresslon
“fa +b) * (c +d) + (a + b + ¢) inj

(ii) Three address code b
(iii) Quadruples. '
(iv) Triples. ‘
(v) Indirect triples. -J 2

e

[R.T.U. 2016, 2015]

s. Expression: (a+b)*(é+d)~!_—(a+b+c)
Syntax tree: :

Fig. P
(ii) Three Address Code : Three-address code(TAC) is
an intermediate code used by optimizing compilers to aid
iri the implementation of code-improving transformations.
Each TAC instruction has at most three operands

and is typically a combination of assignment and a binary
operator. For example, t1=t2+t3.

Lettl =at+b

Let 2 = c+d
Let 3 =tl+c
Lettd =tl1*12 -
Lett5 =t4-+3 (the three address code des1red')

(i) Quadruples representation
. —___
= (:P ". 1 lrbg 2 Re:' ult
g;z : Cc d s
ST (S N T S
|4! + t [+ s
(5) + t ty 1y
(iv) Triples representation
SN op arg1 arg2
() + a b
E 1) + c d
2) . () ()
3) + _El b
4) + c (3)
(&) + (2) 4
(v) Indirect triples representation
Statement
© (14)]
()] (15)
(2) : (16)
(3) an
4) (18)
5 (19)
oP _arg1 arg2 |
(14) + a b
(15) + c . d
(16) = (14) (15)
(17) + a D
(18) + c an
(19) + (16) (18)
_ ‘e Syntax directed definition. Explain the
arious forms of syntax directed definition.
[R.T.U. 2015, 2012]

Ans. Syntax Directed Definition : A syntax directed
definition is a generalization of a context free grammar in
which each grammar symbol has an associated set of
attributes, partitioned into two subsets called the synthesized
and inherited attributes of that grammar symbol. If we think
a node for the grammar symbol in a parse tree as a record
with fields for holding information, then an attributé
<Corresponds to the name of a field.
An attribute can represent anything we choose: a
string, a number, a type, a memory location or whatever,
The value of an attribute at a parse-tree node is defined

by a semantic rule associated with the production rule at .

the node, the value of a synthesized attribute at a node is

—{(B.Tech. (v 8em] C.5. Bolved Papers)

computed from the values of attribute at the children of
that node in the parse tree; the value of an inherited
attribute is computed from the values of attributes at the
sibling and parent of that node.

Semantic rules set up dependency between
attributes that wil| be represented by a graph. From the
dependencies graph, we drive an evaluation order for the
Semantic rules. Evaluation of the semantic rules defines
the values of the attributes at the node jn the parse tree
for the input string. A semantic ruje may also have side
effecte.g., printing a value or updating a global variable,
Of course, an implementation need not explicitly construct
a parse tree ora dependency graph; it just has to produce
the same output for each input string,

- A parse tree showing the values of altributes at
each node is called an annotated parse tree, The process
of computing the attribute values at the node is called
anhotating or decorating the parse tree,

Form of a syntax directed definition %

In a syntax-directed definition each grammar
production A — o has associated with it a set of semantic
rules of the form b: = flel ey, ¢) where fis a
function and either

. bisasynthesized attribute of A and ¢, T
are attributes belonging to the grammar symbols of
the production.

2. bis an inherited attribute of one of the grammar
symbols on the right side of the production and c,,
€2 ..., C are attributes belonging to the grammar
symbols of the production,

In either case, we say that attribute b depends on
attributesc, c,, ..., ¢,. An attribute grammar is a syntax-
directed definition in which the functions in semantic rules
cannot have side effects, '

Function in semantic rules will often be written as
expressions. Occasionally, the only purpose of a semantic
rule in a syntax-directed definition is to create a side effect.
Such semantic rules are written as procedure calls or
program fragments. ‘They can be thought of as rules
defining the values of dummy synthesized attributes of
the non-terminal on the left side of the associated
production; the dummy attribute and the : = sign in the
semantic rules are note shown,

Example: The syntax directed definition in fig. is for a
desk-calculator program. This definition associates an
integer-valued synthesized attribute called val with each of
the non-terminal E, Tand F. For eachE, Tand F-production,
the semantic rule computes the value of attributes val for
non terminal on the left side from the value of val for the

nonterminals on the right side.

Compiler Design
Production | _ Semantic Rules '
L— En print (Eval) —
E2E+T il P RS T
E-T JEvak«Tval —~— -
[T T, °F Tval: =T, val = Fval |
[ToF Tval =Fval — | 2
[F > (E) Fval:=Fval =
| F — digit Fval = digit_iexval |] 3

Fig. : Syntax-directed definition of a simple desk-caleularor

The token digit has a synthesized attribute lexval
whose value is assumed to be supplied by the lexical
analyzer. The rule associated with the production
L —> En for the starting nonterminal L is just a procedure
that prints output of the value of the arithmetic expression
generated by E; we can think of this rule as defining a
dummy attribute for the nonterminal L.

In a syntax directed definition, terminals are
assumed to have synthesized attributes only, as the
definition does not provide any semantic rules for
terminals. Values for attributes of terminals are usually
supplied by the lexical analyzer.

Q.18 (a) Define Syntax Directed Definitions Define
the expressions used by type checker.

[RT.U. 2013/
OR

Define ‘type expressions’ used by rypes

checker. [R.T.U. 2009, Ra). Univ, 2004)
(b) For the assignment statement X = (a+ b)*

(c + d). Construct the translation scheme

and an annotated parse free. JR.T.U. 2013

OR

Obtain the translation scheme Sor obtaining

the three address code Jor the grammar :

Soid=g -

E-E +E,

E-E *E,

E—-E,

E - (Epy

E 5 id

Ans.(a) Syntax Directed Definition : Refer to O 17
Type Expressions

Thetype ofa language construct will be denoted by a
“type expression.” Informal ly, atype expression is either
a basic type or is formed by applying an operator called a

type constructor to other type expressions. The sets of

basic types and constructors depend on the language 1

be checked. The fol lowing definition of type expressions
are used :

(n)
At
ele
nt

wil
(b)
the
asy
(¢)
;Ifi
rec
fro
na
Co
Y
to
fie

CcX

(d
s
ol

b Pl

e T4

oY

s

ParT-B

15 the objectives of sub-division of Run-time

i ﬂlglzﬁ.
/ — e

Ans. The run-time storage might be subdivided to hold :
1. The generated target code. ’
2. Data objects.

3. A counterpart of the control stack.

e eomemmrt

Q.2 Write two limitations of static allocation.

—————————————— —

Ans. Limitations of Static Allocation :

1. The size of a data object and constraints on its position
in memory must be known at compile time.

2. Recursive procedures are restricted, because all
activations of a procedure use the same bindings for
local names.

Q.3 Define activation records.

Ans. Activation Records : Information needed by a
single, execution of a procedure is managed using a
continuous block of storage called an “activation record”

or “frame”.

" Ans. A different storage allocation strategy is used in each
of the three data areas in the organization :
1. - Static allocation lays out storage for all data objects
at compile time.
2. Stack a!locatioyanages the run time storage as a
stack.

=
do you mean by dangling reference.

Ans. Dangling Reference : A dangling reference occurs
when there is a reference to storage that has been

deallocated.

@ rite short notes on :
(a) Nesting depth and Access links

(b) Static versus Dynamic storage allocations j
. [R.TU. 2018, 2014/

———ee——————————
Ans.(a) Nesting Depth : The nesting depth is the number
of statement blocks that are nested due to the use of
control structures (branches, loops). The maximum nesting
depth is restricted to 256 by the ABAP compiler. In control
structure, the restriction on the maximum nesting depth
within a procedure is to five level.

This nesting depth is defined at the level of a
procedure (method). Implementations must not occur at
other points. '

> Access links can be defined in two ways as static
links ahd dynamic links. When we want to pop out the
current frame of the caller and restore the caller frame,
this can be done with the help of a pointer in the current.
frame, called the dynamic link that points to the previous
frame (caller’s frame). Thus all the frames are linked
together in the stack using dynamic link.

The second thing, is if we allow nested functions,
we need to be able to access the variables stored in
previous activation records in stack. This is done with the
help of static link.

Ans.(b) Static memory allocation is used when you know
the memory requirement in advance. Dynamic memory
allocation is assigned by the compiler at runtime.

The space is allocated once, when your program is
started and is never freed. Static allocation is what happens
when we declare a static or global variable. Each static
or global variable defines one block of space, of fixed

size.

~ Dynamic memory allocation is used when the
memory we need, or long we continue to need it, depends
on the factor that are not known before the program runs.
The only way to get dynamically allocated memory is via
a system call and the only way to refer to dynamically
allocated space is through a pointer. ’

(Compiler Design)

The actual process of dynamic allocation requires
more computation times and hence its slower than static
memory allocation.

table with

Q.7 \Discass symbol
subcategories.

(a) Basic operations on symbol table.
(®) Implementation of symbol table.

Jollowing

Ans.(a) Basic Operations on Symbol Table

A symbol table, either linear or hash, should provide

the following operations.

insert()

This operation is more frequently used by analysis
phase, i.e., the first half of the compiler where tokens are
identified and names are stored in the table. This operation
is used toadd information in the symbol table about unique
names occurring in the source code. The format or
structure in which the names are stored depends upon the
compiler in hand.

An attribute for a symbol in the source code is the
information associated with that symbol. This information
contains the value, state, scope, and type about the symbol.
The insert() function takes the symbol and its attributes
as arguments and stores the information in the symbol
table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

lookup()

lookup() operation is used to search a name in the
symbol table to determine:

¢ if the symbol exists in the table.

¢ ifit is declared before it is being used.

_® if the name is used in the scope.

¢ ifthe symbol is initialized. '

* ifthe symbol declared multiple times.

The format of lookup() function varies according to
the programming language The basic format should match
the following: ;

lookup(symbol) .

This method returns 0 (zero) if the symbol does not
exist in the symbol table. If the symbol exists in the symbol
table, it returns its attributes stored in the table.

fRTU 2017]

@)

Ans.(b) Implementation of symbol table : If a compiler
is to handle a small amount of data, then the symbol table
can be implemented as an unordered list, which is easy to
code, but it is only suitable for small tables only. A symbol
table can be implemented in one of the following ways:

e Linear (sorted or unsorted) list

e Binary Search Tree

e Hash table

Among all, symbol tables are mostly implemented as
hash tables, where the source code symbol itself is treated
as a key for the hash function and the return value is the
information about the symbol.

n the symbol table management system.
gn Symbol table.

Ans, Symbol table : A symbol table mechanism allows
us to add new entries and to find existing entries efficiently.
The two symbol table mechanisms described here are
linear lists and hash tables. We evaluate each scheme on
the basis of the time required to add n entries and make e
inquiries. A linear list is the simplest to implement, but its
performance is poor when ¢ and n get large. Hashing
schemes provide better performance for somewhat
greater programming effort and space overhead. Both

Writke short note [RTU. 2015]

‘mechanisms can be adapted readily to handle the most

closely nested scope rule. ;

Each entry in the symbol table is for the declaration
of a name. The format of entries does not have to be
uniform, because the information saved about a name
depends on the usages of the name. Each entry can be

- implemented as a record consisting of a sequence of

consecutive words of memory to keep symbol table
records uniform, it may be convenient for some of the
information about a name to be kept outside the table entry,
with only a pointer to this information stored in the record.

The symbol table entry itself can be set up when the -
role of a name becomes clear, with the attribute values
being filled in as the information becomes available. In
some cases, the entry can be initiated from the lexical
analyzer as soon as a name is seen in the input, More
often, one name may denote several different objects,
perhaps even in the same block or procedure.

For example, the C declarations-

int X:
, struct x { floaty, z; } ;
use x both as an integer and as the tag of a. structure

with two fields. In such cases, the lexical analyzer can only -

| —{(B.Tech. (V Sem.] C.5. Solved Papers)
(CD.56 -

; ' OR
return to the parser the name itself (or a pointer to the) - Data structure used
lexeme forming that name), rather than a pointer to the 0 Discuss -‘J’”'b;’ subcategories. [R.T.U. 2017]
symbol table entry. The record in the symbol table is created n "3 of a e______,
when the syntactic role played by this name is discovered. == _nt System : It contains
For the above declarations two symbol table entries for x Ans} 1§y3122§:2'?nh:a£:§12m2 y
::::::iu::v: created; one with x as an integer and one as a (2) Btosgs A Do Tnlimaiin,

- (3) Hash Table.
P i ame
hort note on Symbol table and Dangling M %::: ?:e;s dz:t;gion between the token id for an
GEREREEN; R LU Dec. 2013/ identifier or name, the lexeme consisting of the character
string forming the name and the attributes of the name.
Ans, ol Table : Refer to 0.8, Strings of characters may be unwieldy to work wn‘th, 50
compilers often use some fixed-length representation of
the name rather than the lexeme. The lexeme is needed
when a symbol table entry is set up for the first time and
currently valid address or if it is a valid address but there when we look up a lexeme found in the input to determine
is no content in that location, it may cduse the computer whether it is a name that has already appeared. A common
to crash. If the content has changed, it can also cause the representation of a name is a pointer to a symbol table
system to crash or, at the very least, produce erroneous entry for it.
output.
Creation of Dangling Pointer ; Dangling pointers arise
when an object is deleted or deallocated, without modifying
. the value of the pointer, so that the pointer still points to =
the memory location.of the deallocated memory. As the -
System may reallocate the previousty freed memory to

another process, if the original program then dereferences
the (now) dangling pointer, unpredictable behavior may

result, as the memory may now contain completely
different data.

(a) In fixed-size space within a record

Problems Caused by Dangling Pointer : If the
programs writes data to memory pointed by a dangling —
pointer, a silent corruption of unrelated data may result,
leading to suitable bugs that can be extremely difficult to
find or cause segmentation faults (*NIX) or general —
protection faults (Windows). If the overwritten data is —
book keeping data used by the system’s memory allocator,

. the corruption can cause system instabilities. Hence
dangling references.are known as problems.

Dangling References: It is link or pointer to something
(instruction, table element, index item, etc) that no longer
contains the same content. If the reference is not a

NAME ATTRIBUTES
.——'———__—___.

t

-+ e o

<

e e e e o
2 N

[+ 1

e e e o o
]

e s
]

o e ol e o
H

T G .
»

e e e e

ATTRITRS

T —T—
nlo.r,tps:n)n{r.._l.l

(b) In a separate array
P T~) . Fig. 1: Storing the characters of a name
ART-C (2) Storage Allocation Information

Information about the storage allocations that will be
bound tr “ames at run time

: . is kept in the symbol table.
Consider the names with static storage first_ If the target

code is assembly language, we can let the assembler take

T“ﬁ-
\\) JR.T.U. 201 care of storage locations for the various names, In the
OR

symbol tables.
case o_fnames whose storage is allocated on a stack or
E Explain the vafgy_.g_stmte 7 “table - ,‘thc compiler does not allocate storage at aj] the
/ creation and organization. — [RTU2018, 2014 compiler plmnomd:eacﬁvaﬁonmordfhrnch procedure,

lain the organization of symbol table in detai],
Also explaini the Various dala structures used in

ovailable

JR—

'Fig. 2: A linear list of records
If the uw._._..co_ table contains n names, the work
necessary to insert a new name is constant if we do the
insertion without .n:an_n._._w to see if the name is already in
”,._”n table. If multiple entries for names are not allowed
a.n: we need to look =..3= gh the entire table _unwc_.n_
iscovering that a name is not in the table, during work
proportional to n in the process. To find the data about a
name, on the average, we search n/2 names, so the cost
onE.._.”_n_EJ. is also proportional to n. '
us, since insertions and inquiries take ti
proportional to n, the total work for mamnn&:n n a»whﬂhi_gm
“”.I%M.E_EMW is at most cn(n + ¢), where ¢ isa constant
) h.n_.uno:u..:m e time necessary for a few machine
Variations of the searching technique kn
hashing have been implemented in many nwavm_n“_wﬂu“
we monn_mn.. a rather simple variant known as open
m““a_ww. !ws.o_. .:ovo:.. refers to the property that there
be no limit on the number of entries that can be
:.".&n in 9« ﬁ!n mcm__m this scheme gives us the capability
of performing e inquiries on n names in time proportional
ton(n+ e)/m, for any constant m of our choosing.
m:.mu m can be made as large as we like, up to n, this
method is'generally more efTicient than linear lists and is
the method of choice for symbol tables in most situations
.w.._..n space taken by the data structure grows with m
so a time-space trade-off is involved. .
The basic hashing scheme is illustrated in fig. 3. There
N_:.n _M‘M wﬂa eo%arn data structure :
A ash table consisting of a i
oo g of a fixed array of m poiniers
2. Table entries organized into m separate linked lists,
called T_.awn_m (some buckets may be empty). mun:.
record in the symbol table appears on exactly one of
- these lists, Storage for the records may be drawn from
an array of records. Alternatively, the dynamic storage
allocation facilities of the implementation language can
be used to obtain space for the records, often at some
loss of efficiency. 4

To determine whether there is an en ing s i
try for string s
w__mm symbol Sw_m. we apply a hash functionh toss, mcnm 5”“
s) returns an integer between 0 and m— 1. If s is in the
muﬂmco_ table, then it is on the list numbered h(s). If s is not
yetin ...rn.mwavo_ table, it is entered by creatin; n.aoo d mo
s that is linked at the front of the list :__Egamn_ h(s) =
_ >M._..” rule of thumb, ...__a average list is n /m _...voo_.n_u
ong if there are n names in a table of size m. By choosin
m so that n /m is bounded by a small constant, say 2, .__m

time to access a table i i stan
entry Is esse:
Array of list headers, & _._?N_—U\ con g
indcxed by hash value

of | .
owll* Hnu DHD:

NQIIII match

s3I 3T
&

:aL

Siion Fig. 3 : A hash table of size 211
ollowing are c
..o Swmgnﬁﬂ._.:os_w used data structures for
(i) List .U!.- Structure for Symbol Table
. .P:..nu_. list is a simplest kind of mechanism to
implement the symbol table.
. _,_._ this method an array is used to store names and
associated information. .
¢ New names can be added in the order as they arrive
» The pointer ‘available’ is maintained at the end o»
n:.uSqR_ _dnn.u&u. The figure 4 for list data structu!
using arrays is as given below. .

Name | Info 1
Name2 | Info2
_Name3 | Info3
IZtqu-_I:, Info n i
Available —» -
(stant of empty slot) |

Fig, ¢ ; List duta iructure

91T

y/

4

J..)’l’
ﬂxﬂ-i.;
- _-J)
S
-4
g |
) -
).,- 4
= IR
c
-
ff :
C" il
nc
S -
cll _
-

v

CD.58

(ii) Self Organizing List

Namel, Name4, Name2.

-

(3) Hash Tables

(B Tech (v Sem.) C.S. Solved Papers)

\

To retrieve the information about some name we
start from beginning of array and go on searching
up to available pointer. If we reach at pointer
available without finding a name we get an error
“use of undeclared name”.
While inserting a new name we should ensure that
it should not be already there. [it is there another
error ogeur i.e., “Multiple defined name”.
The advantages of list organization is that it takes
minimum amount of space.

This symbol table implementation is using linked
list. A link field is added to each record.

We search the records in the order pointed by the
link of link field.

A pointer “First” is maintained to point to
of the symbol table.

first record

Fig. 5 : Symbol table
The reference to these names can

First =

be Name3,

When the name is referenced or created it is mov ed

to the front of the list.

The most frequently referre
front of the list. Hence access lime 1o m

frequently referred names will be the least

d names will tend to be
ost

hniques used 10 scarch

Hashing is an important te¢
This method 18 supenor

the records of symbol table
to list organization

hashing schemes tWwo tables are mawntaned 3

o In
hash table and symbol table
The hash table consists of k entries from 0, 1 tok-!
baol ;able

These entries are basically pointers to sym

pointing to the names of symbol table
To determine whether the

table, we use a hash function
will result may iteget between 0 to k-1

pame by
position = h{name)
Using the position wo cai obtain t
of name is symbol table
The hash table and the sym

as below
I'he hash fungtion sh

search any

oul

mbol table

Th

mi

e hash function should be such that there will be
nimum number of collision. Collision issucha,

situation where hash function results in same
location for storing the names.

Various collision resolution techniques are open
addressing, chaining, renashing.

The advantage is hashing is quick search is possible
and the disadvantage is th
to implement. Sol
Obtaining scope of variables is very difficult.

at hashing is complicated
me extra space is required.

Symbeoi tshie
hash abie Name Info hash tink
Baml |l_ S
g =
|
! |
=g — o5

Fig.6: Hashing for symbol table 5

“Name' 1§ 1 Sy mbol
“h' such the h{name)
I. We can
he exact locations
bol table can be shown

4 result in umform

Qn

ctivation Trees and Activation
Access Process
JRT.U. 2018, 2014]

What are A
Records? Explain the Darta
without Nested Procedures.

Ans.

(X}

distribution of names (1 5YT

first traversal O
about the flow of control among

execution of program.

Activation Recor
execution of a proced
oA

: It is a graphical representation

Activation Tree .
hen a program is running. It

of flow of activations W _
describes the flow of ontrol over the procedure call chains.
In this
(1) Eachgzallis represented by 2 node.)
(2) The root represents the activation of the main
procedure
(3) Node a is parent of b, if the flow of control goes
fromatob(aws calling b).)
(4) Neodeaisto the left to b if a terminates before b.
trol corresponds to depth-

In this, actual flow of con

ftree. We make the following assumptions

procedures during the

entially; that is, the execution of
f a sequence of steps; with conire
ific point in the program at eac

Control flows sequl
program consists 0
being at some spe¢

step ,.
cedure starts at the beginni

Each exccution of a pro
of the procedure body and eventually return contre
to the point immediately following the place wh

the procedure was called.
d : The information needed by asin

ure is managed using a continu

CD.63

(Compiler Design j=
than a [I,] - to I, where I, is the initial value of i. This
phenomenon occurs because the location of x in the
assignment x = temp of swap is not evaluated until needed,
by which time the value of i has already changed. A
correctly working version of swap apparently cannot be
written if call-by-name isused. ” ;)

Example : Suppose that the function f in the
assignment x = f (A) + f(B) is called by value, Here the
actual parameters A and B are expressions. Substituting
expression A and B for each occurrence of the formal
parameter in the body of f leads to call-by-name; recall
a[i] in the last example. Fresh temporary variables can be
used to force the evaluation of the actual parameters before
execution of the procedure body :

= A

T

t,=1f () -

t,=f(t)

x=t,+t; %

.

Now in-line expression will replace all occurrences of
the formal by t, and t, when the first and second calls, . _|
j respectively are expanded.

/ -__—-#——-——-'—_
Q.14 Differentiate between stack allocation and heap

vzaflocarwu? [R.T.U. 2016, 2015]

OR
% Explain the various storage allocation
\ strategies? . [R.T.U. 2013, 2009, 2008]

when control

across activations of a procedure. That is,
are the

returns to a procedure, the values of the locals
same as they were when control left the last time.

From the type of a name, the compiler determines the
amount of storage to set aside for that name. The address
of this storage consists of an offset from an end of the
activation record for the procedure. The compiler must
eventually decide where the activation records go, rcla!fvc
to the target code and to one another. Once this decision
is made, the position of each activation record and hence
of the storage for each name in the record is fixed. At
compile time we can therefore fill in the addresses at
which the target code can find the data it operates on.

Some limitations go along with using static allocation
alone,

1. The size of adata object and constraints on its position
in memory must be known at compile time.

2. Recursive procedures are restricted, because all
activations of a procedure use the same bindings for

local names.

~ 3, Data structures cannot be created dynamically, since
there is no mechanism for storage allocation at run
time.

Stack Allocation : Stack allocation is based on the idea

of a control stack; storage is organized as a stack and

activation records are pushed and popped as activation

begin and end respectively. Storage for the locals in each

call of a procedure is contained in the activation record

L—for that call. The values of locals are deleted when the

_~ o}——ﬁ
'/ QWiite sl note ow'storage allocation strategies activation ends; that is, the values are lost because the

g OR
Explain the differences between stack allocation

and heap allocation strategies.
[R.T.U. Dec. 2013, R.T.U. 2012, 2009, Raj. Univ. 2007/

—— —
Ans. Storage Allocation Strategies : A different storage
| allocation strategy is used in each of the three data areas
" in the organization.
-‘/!/Static allocation lays out storage for all data objects
at compile time. '
@Stack allocation manages the run-time storage as a
stack.
3. ,E&a% allocation allocates and deallocates storage as
needed at run'time from a data area known as a heap.
Static Allocation : In static allocation, names are bound
to storage as the program in compiled, so there is no need
for a run time support package. Since the bindings do not
«hange at run time, every time a procedure is activated,
its names are bound to the same storage locations. This

i

storage for locals disappears when the activation record
is popped. f

We first describe a form of stack allocation in which
the sizes of all activation records are known at compile
time. Situations in which incomplete information about sizes
is available at compile time are considered below.

Suppose that register top marks the top of the stack.
At run time, an activation record can be allocated and
deallocated by incrementing and decrementing top,
respectively, by the size of the record.

Figure 1 shows the activation records that are pushed
onto and popped from the run-time stack as control flows
through the activation tree. Dashed lines in the tree go to
activations that have ended. Execution begins with an

- activation of procedure s. When control reaches the first
call in the body of s, procedure r is activated and its
activation record is pushed onto the stack. When control
returns from this activation, the record is popped leaving
just the record for s in the stack. Whenever control is in
activation, its activation record is at the top of the stack.

jroperty allows the values of local names to be retained

%

—{B.Tech. (V Sem.) C.S. Solved Papers)

@

Position in : Activation Records Remarks
Activation Tree on the Stack
s
s — aTemay Frame for s
" s
s i
a: array
/ r r is activated
r | i+ integer '
.8 "
/ a . array Frame for r has been
/7 4(1,9) | pospedind(l,)
T a9 " {Tinteger | P
. ‘s
/
7 .
r/) . \
A9 ™ \
& a(L,9)
& /q r a3 returned to q(1, 3)
// : i~ Integer . '
PILI) "7 g (l, 0)
Fig. 1

Several activations occur between the last two
diagrams in fig.1. In the last diagram activations p (1, 3)
and q (1, 0) have begun and ended during the lifetime of
q (1, 3), so their activation records have come and gone

. from the stack, leaving the activation record for q (1, 3)

on fop. ‘
Heap Allacation : Heap allocation parccls out pieces of
contiguous-storage, as needed for activation records or
other objects. Pieces may be deallocated in any order, so
overtime the heap will consist of alternate areas that are
full and in use. .
The stack allocation strategy discussed above cannot,

be used if either of the following is possible :

- L. The value of local names must be. rcmned when

activation ends. :
- 2. Acalled activation outlines the caller. This possibility

cannot occur for those languagm where activation -

trees correctly depict the flow of control between
procedures.

In each of the above cases, the deallocation records
need not occur in a last-in first-out fashion, so storage
cannot be organized as a stack.

The difference between heap and stack allocation of

activation records can be seen from the fig.1 and the fig.2.
Position in the Activation Records Remarks
Activation Tree in the Heap

- SR
[_control link

r —
link
=
trol Tink

-—-
——

I'I

contrg

Retained activation
record for r

-
/
T a9

|14
g &
:l:a

Fig. 2

In fig.2, the record for an activation of procedure r is
retained when the activation ends. The record for the new
activation q (1, 9) therefore cannot follow that for s
physically, as it did in fig.1. Now if the retained activation
record for r is deallocated, there will be free space in the
heap between the activation records for s and q(1, 9). It
is left to the heap manager to make use of this space.

. Differences between stack allocation and heap alloca-

tion:

Stack Allocation Heap Allocation
Used for static memory Used for dynamic
allocation. - . memory allocation.
Variables allocated are Variables on heap are
stored on memory. allocated at runtime,
Access to this memory is | Slow memory access.
very fast.

Allocation is dealt with No dependency between
when the program is data, any element can be
compiled. accessed randomly.
Execution follows LIFO | Memory blocks can be
Order, that is, the last allocated at any time
reserved block is always | and freed at any time.
the first one to be freed.
Keeping track is very Keeping track of which
simple. Only need to blocks are free and
adjust the stack pointer. which are not is much

. more complex.
Stacks are used when data | Heaps are used if details
to be allocated is known | about data are not
at compile time and is not | known at compile time
too big. or if data is big.
Stacks are thread specific. | Heaps are application

i ot .

——_—-__.__

PrReEvious YEARS QUESTIONS

PaArT-A

“construct the DAG for it.

=a+b
=c+d
"NI&N

=t,_t

sider the following basic block and then

mU\O\

[R.TU. 2013]

Fig. : DAG for basic block
Now that the order is the one we would naturally

obtain from a syntax-directed translation of the expression
(a+b)-(e—(c+d))

Q.2 What do you understand by basic blocks.

r BN

- &

{D.Tech. (v Sem.) C.8. Solved Papers)

CD. T
Ans. Basic Blocks : A basic block 1s a sequence of
mnsoc}lﬁft statements in which flow of control enters at
the beginning and leaves at the end without halt or possibility
of branching except at one end

Ans. Flow Graph : We can add the flow-of-control
information to the set of basic blocks making up a program
by constructing a directed graph called a flow graph. The
nodes of the flow graph are basic blocks

‘ Whar do you mean by machine independent
optimizations”

Ans. Mackine Independent Optimizations : A
“machine independent optimizations” are program
ansformations that improve the target code without taking
info considerstion. any properties of the target machine.

Ass. Optimiring Compilers : Compilers that apply code-

improviag transformations are called “optimizing

compriers™

ParT-B
Qs a DAG for the basic block whose code
. is given betlow:
D:=B*C __.
. E-=A+B |
B=B*C
A:=E-D J JR.T.U. 2018, Dec. 2013/
Asns. Given
D=B*C
E=A+B
B=8B*C
A=E-D
DAG for the given code is
(=) A
*)D. B
A B C

., Flg. : DAG of given code

To generate the DAG we follows the following

step .
Step1: D = B*C

K
B c
B
K
A B
Step3: B :=B*C

It is same as step 1. so

Xﬂ
B C

Step2:E = A+

Step4: A:=E-D

le. Step 2 (Step 1, Step 3)

ie.

A
E D,B
A B C
Q.7 iplain the basic block and control gaw graph.
T [RTU. 0I5,

OR
Write short noles on :
(a) Flow graph
(6) Basic block .~

OR
Define basic blocks and flow graphs? Explain
structure preserving fransformation on basic
blocks in detail, [R.T.U. 2013/

[RT.U. 2016]

Ans. Flow Graphs :A graph representation of three
address statements, called a flow graph, is useful for
understanding code generation algorithms, even if the graph
is not explicitly constructed by a code generation
algorithm. §

Basic Blocks : A basic block is a sequence of
consecutive statements in which flow of control enters at
the beginning and leaves at the end without halt or possibility
of branching except at the end. The following sequence
of three address statements forms a basic block :

Compller Design
t:=a'a
t,:=a*b
t,:=2%,
t =t 4+t
t,:=b*b
1=t +1,
A three address statement x : =y + z is said to define
x and to use (or reference) y and z. A name in a basic
block is said to be live at a given point if its value is used
after that point in the program, perhaps in another basic
block. 1
The following algorithm can be used to partitién a
sequence of three address statements into basic blocks.
Algorithm : Partition into basic blocks.
Input : A sequence of three address statements.
Output : A list of basic blocks with each three address
statement in exactly one block.

Method "
1. We first determine the set of leaders, the first

statements of basic blocks. The rules we use are

the following :

(i) The first statement is a leader.

(i1) Any statement that is the target of a conditional

. orunconditional goto is a leader.

(i) Any statement that immediately follows a goto .
or conditional goto statement is a leader.

2. For each leader, its basic block consists of the
leader and all statements up to but not including
the next leader or the end or the program.

Structure Preserving Transformation)

The various structure preserving transformations on

basic blocks are:
1. Common sub-expression elimination. - "
2. Dead-code elimination.
3. Renaming of temporary variables.
4, Interchange of two independent adjacent statement.
Let us now examine some transformation in more detail:
1. Renaming Temporary Variables

Suppose we have a statement t := b + ¢, where tis a
temporary. If we change this statement to u := b + c where
u is a new temporary variablg and change all uses of this,
instance of t to u, then the value of the basic block is not
changed. In fact, we can always transform a basic block
into an equivalent block in which each statement that
defines a new temporary block. We call such a basic block
a normal-form block.
2. Interchange of Statements

Suppose we have a block with the two adjacent
statemnents : .
t,:=b+c
t:=xty

(CD.74) -

OR g
Write short notes on Advantages of DAG

[R.TU. 2017}

OR v

What is peephole optimization? Explain it.
[R.T.U. Dec. 2013
OR
What are the advantages of DAG ? Explain the
peephole optimization. __~ [RTU. 2014

Ans. Advantages of DAG
(i) WhenaDAG is created, common sub-expressions
are detected.
(i) Creating a DAG makes it easy to see variables
and expression which are used or defined within a
block. X
(i) We can. generate triples and quadruples
representing DAG. They are easier for humans to
read than an abstract syntax tree,
(iv) Itprovides us more opportunity for optimization at
code generation time.
(v) It allows us to determine the loops and thus the
loops can be resolved,
Peephole Optimization : In compiler theory, peephole
optimization is a kind of optimization performed over a
very small set of instructions in a segment of generated
code. The set is called a “peephole” or a “window”. It
works by recognising sets of instructions that don’t actually
do anything or that can be replaced by a leaner set of
instructions.

Replacement Rules : Common techniques applied in
peephole optimization :

e Constant Folding : Evaluate constant subexpressions

in advance. .

o Strength Reduction : Replace slow operations with
. faster equivalents. :
¢ Null Sequences : Delete useless operations.
s Combine Operations : Replace several operations

with one equivalent: P
¢ Algebraic Laws : Use algebraic laws to simplify or

reorder instructions.

-'s Special Case Instructions : Use instructions

designed for speoial opevand cases. .

e Address Mode Operations : Use address modes
to simplify code.

There can, of course, be other types of peephole
optimization involving simplifying the target machine
§~ instructions, assuming that the target machine is known in

<" advance. Advantages of a given architecture and
instruction sets can be exploited in this case.

=(B.Tech. (Vv Sem.) C.S. Solved Papers)

Examples : Replacing slow instructions with faster
ones

aload 1
aload]
mul

can be replaced by
aload 1
dup
mul

‘This kind of optimization, like most peephole
optimizations, makes certain assumptions about the
efficiency of instructions. For instance, in this case, it is
assumed that the dup operation (which duplicates and
pushes the top of the stack) is more efficient than the
aload X operation (which loads a local variable identified
as X and pushes it on the stack).

Removing Redundant Code : Another example is
to eliminate redundant load stores :

a=b+c;
d=a+e;’
is straightforwardly implemented as :
MOV b,RO # Copy b to the register
ADDc, RO # Addctotheregister, the register
isnowb+c |
MOV RO, a # Copy the registerto a
MOV a, RO # Copy a to the register
ADD e, RO # Adde to theregister, the register

is now ate[(b+c)+e]

MOV R0, d # Copy the register to d but can be
optimised to

MOV b, RO # Copy b to the register

ADD ¢, R0 # Addctotheregister, the register

isnowb +c (a)
MOV R0,a # Copy the register to a
ADDe, RO # Add e to the register, which is
now bt+cte[(a)te]
MOV R0,d # Copy the register tod
Furthermore, if the compiler knew that the variable &
was not used again, the middle operation could be omitted.
Removing Redundant Stack Instructions : If the
compiler saves registers on the stack before calling a
subroutine and restores them when returning, consecutive
calls to subroutines may have redundant stack instructions,
Suppose the compiler generates the following Z80
instructions for each procedure call :
PUSH AF
PUSH BC

Compiler Design CcD.75
PUSH DE Characteristics of Peephole Optimization
PUSH HL (a) Redundant instruction elimination.
CALL_ADD R (b) Flow of control optimization
POP HL (c) Algebraic simplifications
POP DE (d) Use of machine idioms
POP B
POP >m ain in brief the various issues of design o,
If there were two consecutive subroutine calls, they code generalor oR RTU. ee. 2013f

would look like this :
PUSH AF
PUSH BC
PUSH DE
PUSH HL
CALL_ADD RI
POP HL
. POP DE
. POP B¢
POP AF
PUSH AF
PUSH BC
PUSH DE
| PUSH HL
’ CALL_ADD R2
POP HL
POP DE
POP BC
POP AF
The sequence POP regs followed by PUSH for the
same registers is generally redundant, In cases where it is
redundant, a peephole optimization would remove these
instructions. In the example, this would cause another
redundant POP/PUSH pair to appear in the peephole and
these would be removed in turn. Removing all of the
redundant code in the example above would eventually
leave the following code :
PUSH AF
PUSH BC .
PUSH DE
PUSH HL
. CALL_ADD R1
CALL_ADD R2
POP HL
POP DE
POP BC
POP AF
Implementation : Modemn architectures typically
allow for many hundreds of different kinds of peephole
optimizations and it is therefore often appropriate for

compiler programmers to implement them using a pattern

matching algorithm,

What are ¢ 5-igsues
generatof, loop”optimization

in design of code

TIRTU 20147

Ans, Issues in the Design of a Code Generator , |

While the details are dependent on the target language
and the operating system, issues such as memory
management, instruction selection, register allocation and
evaluation order are inherent in almost all code generation
problems. =
1. Input to the Code Generator

The input to the code generator consists of the
intermediate representation of the source program
produced by the front end, together with information in
the symbol table that is used to determine the run time
addresses of the data objects denoted by the names in the
intermediate representation. There are several choices for
the intermediate language, including: linear representations
such as postfix notation, three address representations such
as quadruples, virtual machine representations such as
syntax trees and dags.

We assume that prior to code generation the front
end has scanned, parsed and translated the source program
into a reasonably detailed intermediate representation, so
the values of names appearing in the intermediate language
can be represented by quantities that the target machine
can directly manipulate (bits, integers, reals, pointers, etc.).
We also assume that the necessary type checking has
take place, 5o type conversion operators have been inserted
whenever necessary and obvious semantic errors (e.g.,
attempting to index an array by a floating point number)
have already been detected. The code generation phase
can therefore proceed on the assumption that its input is
free of errors, In some compilers, this kind of semantic
checking is done together with code generation.

2. Target Programs,

The ouput of the code generator is the target program,
The output may take on a variety of forms: absolute
machine language, relocatable machine language or
assembly language. Producing an absolute machine
language program as output has the advantage that it can
be placed in a location in memory and immediatety
executed. A small program can be compiled and executed

(cD.78)-
quickly. A number of “student-job™ compilers, such as
WATFIV and PL/C, produce absolute code.

Producing a relocatable machine language program
as output allows subprograms to be compiled separately.
A set of relocatable object modules can be linked together
and loaded for execution by a linking loader. Although we
must pay the added expense of linking and loading if we
produce relocatable object modules, we gain a great deal
of flexibility in being able to compile subroutines separately
and to call other previously compiled programs from an
object module. If the target machine does not handle
relocation automatically, the compiler must provide explicit
relocation information to the loader to link the separately
compiled program segments.

Producing an assembly language program as output
makes the process of code generation somewhat easier.
We can generate symbolic instructions and use the macro
facilities of the assembler to help generate code. The price
paid is the assembly step after code generation. Because

- producing assembly code does not duplicate the entire task
of the assembler, this choice is another reasonable
alternative, especially for a machine with-a small memory,
where a compiler must uses several passes.

3. Memory Management Sy ’

Mapping names in the source program to addresses
of data objects in run time memory is done cooperatively
by the front end and the code generator. We assume that
a name in a three-address statement refers to a symbol
table entry for the name. ’

If machine code is being generated, labels in three
address statements have to be converted to addresses of
instructions. This process is analogous to the “back
patching”. Suppose that labels refer to quadruple numbers
in a quadruple array. As we scan each quadruple in tumn
we can deduce the location of the first machine instruction
generated for that quadruple, simply by maintaining a count
of the number of words used for the instructions generated

so far. This count can Be kept in the quadruple array (in
an extra field), so if a reference such as j: goto i is
encountered and i is less than j, the current quadruple

number, we may simply generate a jump instruction with

the target address equal to the machine location of the
first instruction in the code for quadruple i. If, however,
the jump is forward, so i exceeds j, we must store on a list

for quadruple i the location of the first machine 5-38:&.

generated for quadruple j. Then we process quadruple i,

we fill in the proper machine location for all instructions
that are forward jumps (0 i.

~(B.Tech. (V Sem.) C.S. Solved Papers)

Instruction Selection

e nature of the instruction set of the target machine

determines the difficulty of instruction selection. The
uniformity and completeness of the instruction set are
important factors. If the target machine does not support
each data type in a uniform manner, then each exception
to the general rule requires special handling. Instruction
speeds and machine idioms are other important factors. If
we do not care about the efficiency of the target program,
instruction selection is straightforward. For each type of
three-address statement we can design a code skeleton
that outlines the target code to be generated for that

construct.

For example, every three address statement of the
~form x : =y + z, where x, y and Z are statically allocated,
can be translated into the code sequence

MOV y, RO /*loady into register RO */
ADD z, RO /* add zto RO */
MOV RO, x /* store RO into x */

Unfortunately; this kind of statement by statement
code generation often produce poor code. For example,

the sequence of statements.

would be translated into

a=b+c

d:=a+e

MOV b, RO
ADD ¢, RO
MOV RO, a
MOV a, RO
ADD e, RO
MOV RO, d

Here the fourth statement is redundant and so is the
third if ‘a’ is not subsequently used.
The quality of the generated code is determined by its

speed and size.

A target machine with a rich instruction setmay provide
several ways of implementing a given operation. Since the
cost differences between different implementations may be
significant, a naive translation of the intermediate code may
lead to correct, but unacceptably inefficient target code. For
example if the target machine has an “increment” instruction
(INC), then the three address statement a = a + | may be
implemented more efficiently by the single instruction INC a,
rather than by a more obvious sequence that loads a into a
register, add one to the reglster and then stores the result

back into a.

MOV a, RO
ADD #1,R0
MOV R0, a

—{(CD.77

_no.:hnhﬁ Design p=—
ds are needed to design good code

Instruction spee design :
sequence but unfortunately, accurate timing information

is often difficult to obtain. Deciding which machine code
sequence is best for a given three address construct may
also require knowledge about the context in which that

nstruct appears.
Register Allocation
Tructionsnvolvi gister operands are usually
shorter and faster than those involving operands in memory.
Therefore, efficient utilization of register is _uw:mac_E._.w
important in generating good code. The use of registers is
often subdivided into two sub problems :
(i) Duringregister allocation, we select the set of variables
that will reside in registers at a point in the program.
(i) During a subsequent register assignment phase, we
pick the specific register that a variable will reside in.

Finding an optimal assignment of registers to variables
is difficult, even with single register values. Mathematically,
the problem is NP-complete. The problem is further
complicated because the hardware and/or the operating
system of the target machine may require that certain
register usage conventions be observed. Certain machines
require register pairs (an even and next odd numbered
register) for some operands and results. For example, in
the IBM System/370 machines integer multiplication and
integer division involve register pairs. The multiplication
instruction is of the form

M, %,y

where x;, is the multiplicand, is the even register of an
even/odd register pair, The multiplicand value is taken from
the odd register pair. The multiplier y is a single register.
The product occupies the entire even/odd register pair.
The division instruction is of the form

Dx,y

where the 64-bit dividend occupies an even/odd
register pair whose even register is x; y represents the
divisor. After division, the even register holds the remainder
and the odd register the quotient.

Now consider the two three address code sequences
in fig. 1(a) and 1(b) in which the only difference is the
operator in the second statement. The shortest assembly
sequence for (a) and (b) are given in fig.2. R stands for
register i. L, ST and A stands for load, store and add
respectively. The optimal choice for the register into which
‘a" is to be loaded depends on what will ultimately happen
loe:

t:=a+b t'=a+b
timt9% t:=t+c
to=t/d t:=t/d
(a) (b)

Flg. | : Two three address code sequence

(CD.77)
L Rl,a L RO, 2
A RI,b A RO, 2
M RO, c A RO, ¢
D RO, d SRDA RO,3Z
ST RIt D RO d
(a) ®

Fig. 2 : Optimal machine code sequence

6. Choice of Evaluation Order

The order in which computations are performed can
affect the efficiency of the target code. Some computation
orders require fewer registers to hold intermediate results
than others. Picking a best order is another difficult, NP-
complete problem. Initially, we shall avoid the problem by
generating code for the three-address statements in the

. order in which they have been produced by the intermediate

code generator.
7. Approaches to Code Generation

The most important criterion for a code generator is
that it produce correct code. Correctness takes on special
significance because of the number of special cases that
code generator must face. Given the premium on
correctness, designing a code generator so it can be easily
implemented, tested and maintained is an important design
goal.
Various Issues in Design of Loop Optimization

Loop optimization can be viewed as the application
of a sequence of specific loop transformation to the source
code or intermediate representation, with each
transformation having an associated test for legality.

A transformation or optimization generally must
presence the temporal sequence of all dependencies if it
is to preserve the result of the program.

Evaluating the benefit of a transformation or
sequence of transformation can be quite difficult with this
approach, as the application of one beneficial
transformation may require the prior use of one or more
other transformation that by themselves, would result in
reduced performance.

e Write short notes on Global Data Flow analysis.
[R.TU. 2017}

Ans. Global Data Flow Analysis : In order to do code

optimization and a good job of code generation , compiler

needs to collect information about the program as a whole

and to distribute this information to each block in the flow

graph. A compiler could take advantage of "reaching

definitions", such as knowing where a variable like debug
was last defined before reaching a given block, in order
to perform transformations are just a few examples of
data-flow information that an optimizing compiler collects
by a process known as data-flow analysis.

